Anatomic study of the carpal tunnel in adults using monoenergetic reconstruction of dual-energy computed tomography Authors Heng Zhao Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China Fei Peng Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China De qiu Tang Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China Jin cai Liu Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China Hao Lei Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China Qiang Liu Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China Fang Wang Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China Qiu ping Ren Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China Jiao yang Li Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China Feng zhe Wang Department of Radiology, The 4th people Hospital of Shenyang, Shenyang, China Zhao Lu Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China Shi Nong Pan Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China Admin DOI: https://doi.org/10.47391/JPMA.1203 Abstract Abstract Purpose: To seek optimal keV settings for imaging carpal tunnel in adults by dual-energy computed tomography (DECT) monoenergetic technique; to describe anatomic characteristics of carpal tunnel and to observe correlation between carpal bony and soft tissue structures. Methods: DECT images of 20 wrists (11 left and 9 right wrists; 14 men, mean age 26.93 ± 1.38 years, range 23 to 28, and 6 women, mean age 24.17 ± 0.98 years, range 23 to 26) were evaluated. Monoenergetic images were reconstructed at 42, 62, 82, 102, 122, and 142 keV. Image quality was assessed along a 5-point Likert scale, and the highest-quality images were chosen for quantitative analysis. Two musculoskeletal radiologists performed both analyses independently. Results: The optimal energy spectrum with the best contrast-to-noise ratio (CNR) for monoenergetic images were at 62 keV (19 wrists, 95%) and 61 keV (1 wrist, 5%). There was substantial interobserver agreement between the readers in the 5-point Likert scale analysis of image quality (? = 0.793). Bland-Altman plots also indicated good agreement between observers in quantitative analysis. Intra-category 1 and 2 correlation was mostly discovered at hamate hook level and middle level of pisiform (P < 0.05), while bony and soft tissue structures partly reached correlation (P < 0.05). Conclusion: The optimal energy spectrum for monoenergetic DECT imaging of carpal tunnel structures was 62 keV. DECT monoenergetic imaging could predict changes in soft tissue structures and demonstrate carpal tunnel anatomic structures. Keywords: DECT, monoenergetic, keV, carpal tunnel, Continuous... Downloads PDF Published 2020-11-18 How to Cite Heng Zhao, Fei Peng, De qiu Tang, Jin cai Liu, Hao Lei, Qiang Liu, Fang Wang, Qiu ping Ren, Jiao yang Li, Feng zhe Wang, Zhao Lu, Shi Nong Pan, & Admin. (2020). Anatomic study of the carpal tunnel in adults using monoenergetic reconstruction of dual-energy computed tomography. Journal of the Pakistan Medical Association, 1–17. https://doi.org/10.47391/JPMA.1203 More Citation Formats ACM ACS APA ABNT Chicago Harvard IEEE MLA Turabian Vancouver Download Citation Endnote/Zotero/Mendeley (RIS) BibTeX Issue A Head of Print Section Original Article License Copyright (c) 2020 Journal of the Pakistan Medical Association This work is licensed under a Creative Commons Attribution 4.0 International License.