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Ultrasound image smoothing based on adaptive and non-adaptive filters
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Abstract 
Objective: To model adaptive and non-adaptive filters to ensure smooth ultrasound images. 
Method: The comparative study was conducted at Al-Yarmouk Teaching Hospital, Al Mustansiriyah University, 
Baghdad, Iraq, in 2019, and comprised ultrasound images of kidney (303x208 pixel) and foetus (111x109 pixel). 
These images were smoothed based on 8 filters; 1 non-adaptive (median), and 7 adaptive enhanced filters (Gamma, 
Wiener, Lee, Frost, Kuan, Adaptive Lee and Adaptive Frost). They were applied to the images by windows measuring 
3x3, 5x5, 7x7. The additive noise and the multiplicative noise factor were calculated using histogram to determine 
the noise type for each image. Statistical criteria included mean square error, normalised absolute error and signal-
to-noise ratio. 
Result: The relationship between noise ratio and filter type showed that Wiener was the best filter and the best 
sliding window was 3x3. The worst filters were Gamma, EFrost and Kuan.  
Conclusion: The relationship between sliding window size and noise ratio for all the smoothing filters clearly 
identified the best filter for the type of noise. 
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Introduction 
Digital images are used as information source in many 
research fields1,2. Unfortunately, similar to other digital 
signals, digital images are also sometimes unintentionally 
corrupted by unwanted signals, called noise3,4. Digital 
images play an important role both in daily life 
applications, such as satellite television and medical 
imaging5,6, as well as in areas of research and technology, 
such as geographical information systems (GIS) and 
astronomy7. Digital images are often corrupted by 
different types of noise during the acquisition and 
transmission phases8,9. Such degradation negatively 
influences the performance of many image processing 
techniques, and a pre-processing module to filter the 
images is often required10. Noise removal is one of the 
major concerns in the field of computer vision and image 
processing.  The goal of removing noise is primarily to 
suppress the noise as well as to preserve the integrity of 
edges and detailed information11. In the field of digital 
image processing, two applications of great importance 
are noise filtering and image enhancement12. A model of 
speckle noise reduction with various filters is basically 
used for speckle elimination. Smoothing or elimination of 
speckle noise in medical ultrasound images have been 

studied in details such as spatial filtering, diffusion 
filtering, and wavelet filtering. For instance, Manoj et al.13 
used computed tomography (CT) images to manage the 
noise using Bayes shrinkage rule in Shearlet domain. 
Hyunho et al.14 studied speckle-reducing anisotropic 
diffusion (SRAD) and a Bayes threshold in the wavelet 
domain. They used signal-to-noise ratio (SNR) to show the 
quality of the enhancement algorithm as a criterion. 
Carlos et al.15 used full-reference distortion metrics and 
filter evaluation process to have ouput certainty. 

The current study was planned to model adaptive and 
non-adaptive filters to ensure smooth ultrasound images.  

Materials and Methods 
The comparative study was conducted at Al-Yarmouk 
Teaching Hospital, Al Mustansiriyah University, Baghdad, 
Iraq, in 2019, and comprised ultrasound images of kidney 
(303x208 pixel) and foetus (111x109 pixel). These images 
were smoothed based on 8 filters; 1 non-adaptive 
(median), and 7 adaptive enhanced filters (Gamma, 
Wiener, Lee, Frost, Kuan, Adaptive Lee and Adaptive 
Frost). They were applied to the images by windows 
measuring 3x3, 5x5, 7x7. Methods of noise removal can be 
both linear and non-linear. Linear methods are fast 
enough, but do not preserve image detail, and nonlinear 
methods preserve image detail. De-noising filters 
(smoothing techniques) can be classified into two kinds of 
filters: non-adaptive filters which can directly apply to the 
noisy images without the need for any prior knowledge 
on the statistical relationship governing the image 
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points16,17, and adaptive filters that are used to smooth 
speckle multiplicative noise in ultrasound images18,19.  

Wiener filter involves linear estimation of a desired image 
data sequence from another related sequence. Wiener 
method implements spatial smoothing and its model 
complexity control corresponds to the window size. Lee’s 
filter exploits the local statistics within the image region 
to reduce both additive and multiplicative noise in 
different images.  

Additive noise smoothing filter has the model: 
I(x,y)=R(x,y)+n(x,y) in which I(x,y), R(x,y), and n(x,y) 
represent the observed image, and the original with 
mean value equal to zero, respectively. 

However, small window size results in an undesirable 
smoothing. It is our opinion, that 3x3 or 5x5 or 7x7 
window sizes are the most effective, and if the noise 
reduction is not significant, the filter can be run 
recursively. 

Multiplicative noise smoothing filter mathematically is 
presented by the equation I(x,y) = R(x,y).F(x,y) in which 
I(x,y) and R(xy) define earlier and F(x,y) represents the 
signal independent multiplicative noise. 

An optimal linear approximation can be used to produce 
a new filtration algorithm similar to that adopted by 
additive noise model. This linear approximation can be 
introduced as20 I(x,y) = R(x,y) F +̅R (̅x,y).(F(x,y)-F ̅ in which F 
̅ represents the mean of the multiplicative noise. The 
priori mean and variance of R(x,y) can, then, be 
approximated by  

and 

              

in which I ̅ (x, y) and σ_I^2 (x,y) represent the local mean 
and the local variances of I(x,y), while σ_F^2 is the noise 
variance. Substitutions in the equation lead to the 
approximation of the ungraded image with  

 

In fact, Luis et al.21 modified the mentioned filters by 
adding another improvement factor to improve the 
smoothing process by incorporating the local gradient 
information to decide as to which part of the utilised 
window the centre point belonged. 

Kuan filter is a local linear minimum mean square error 
(LLMMSE) filter based on the non-stationary mean and 
non-stationary variance (NMNV) image model. While the 
NM describes the gross structures in an image, the NV 
characterises the edge structures and the elementary 
textured information within the image. The observed 
image, by Kuan's model is: 

I(x,y)=R(x,y)+n(x,y) in which n(x,y) is zero mean noise, 
which can be considered signal-dependent or signal-
independent. However, the local linear minimum mean 
square error (MSE) filter estimates the smooth value in an 
ultrasound image by22: 

R ̂ (x,y)=R ̅ (x,y)+〖K_R K〗_I^(-1) [I(x,y)-I ̅ (x,y)]     in which 
KRI and KI represent the cross-covariance matrix of R(x,y) 
and I(x,y), and the covariance matrix of I(x,y), respectively. 
This filter can be implemented to reduce image noise of 
both signal-independent and signal-dependent types. 

Using the the equation 

, the requirements for performing this filter is achieved by 
determining the local coefficient of variation, i.e. CI (x, y),  

in which w ̅(x,y) and σ_w (x,y) represent, respectively, the 
mean and standard deviation (SD) of the considered 
random variables (x,y). This parameter, however, can be 
used as an indicator for the homogeneity of regions 
within the ultrasound images, and, therefore, can be 
utilised to control the speckle reduction process in an 
adaptive smoothing filter.  

The designed algorithm in Matlab software for all 
smoothing filters has 7 steps: Step 1: load ultrasound 
image (I)= imread(img). Step2: Passing the smoothing 
filter over the image(I). J = smooth filter (I, [sz sz]); where 
sz is filter window size. Step4: Calculate the additive noise 
between the filtered image and the original image using 
additive noise factor=I-J. Step5: Calculate the 
multiplicative noise between the filtered image and the 
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original image using multiplicative noise factor=I. /J. 
Step6: Plot histogram image for original image and 
filtering image imhist (I or J). Step7: Plot histogram for 
additive and multiplicative noise hist (N) where N= noise 
type. 

There are objective evaluations for judging the effect of 
noise reduction to evaluate the quality of the 
performance of each filtering method, and the differences 
between the original image g(x, y) and the filtered image 
f(x,y) can be quantified by many parameters, such as MSE, 
which can be expressed by the equation23:  

in which g ̂(x,y) is processed image after noise reduction 
from noise-polluted image g(x,y), and it should be smaller 
for better noise reduction. The MSE has been widely used 
to quantify image quality. When it is used alone, it does 
not correlate strongly enough with perceptual quality. It 
should be used together with other quality metrics and 
visual perception 24,25. SNR is calculated as  

in which f(x, y) is pure ideal image not polluted by noise, 
g(x, y) is captured image polluted by noise, the image size 
is m rows times n lines. The bigger value of the SNR refers 
to better noise reduction effect. The SNR has been proved 
to be a very sensitive test for image degradation, but is 
completely non-specific. Any small change in image noise 
by de-speckling would cause an increase in the SNR. 

The normalised absolute error (NAE) measure is defined 
as  

Large NAE value means de-noised image is of poor quality 
26,27. 

The designed algorithm for the criterion has 7 steps: 
Step1: Load ultrasound image or added-noise image 
(img1) and read img1; I1=imread(img1). Step2: Load 
filtering image (img2) and read img2; I2 =imread(img2). 
Step3: Display I1 and I2. Step4: Calculate criteria between 
I1&I2 MSE = immse(I1, I2). Step5: Calculate NAE between 
I1&I2 NAE = sum(sum((K)))./sum(sum((I1))); where K= 
imabsdiff(I1, I2) and imabsdiff is function expressing 

absolute difference between two images. Step7: Calculate 
SNR; snr = snr(I1, I2). 

The detailed algorithm was noted (Figure 1). 

Results 
Kidney ultrasound image size was 303x208 pixel with 
pixel depth 24 bit, and the ultrasound image of foetus was 
of size 696x486 pixel with pixel depth 24 bit. Surface 
structures, such as in the foetal image, were at frequency 
7-18 MHz to provide better axial and lateral resolution. 
The kidney image was taken at a frequency of 1-6MHz 
with lower focal and lateral resolution, but with greater 
penetration.  

Speckle noise was added with per cent from 0.01 to 0.06 
to the images used, and the added noise made the image 
difficult to enhance. Smoothing of the ultrasound images 
using median, Weiner, Lee, Frost, Kuan filters with 
window size 3x3, 5x5 and 7x7 showed that the noise 
smoothing behaviour was the same for all noise per cent 
in the 3x3 sliding window for both median and Weiner 
filters for all noise ratios. For sliding window 5x5 and 7x7, 
the noise behaviour was the same in the image. This 
behaviour was different with the remaining filters     
(Figure 2). 

Smoothing histogram decreased with the number of 
pixels in the median, Wiener, Lee and Kuan filters as the 
filter window size increased. There was increase in the 
number of pixels in the Frost filters as the size of the filter 
window increased or the noise ratio increased. 
Smoothing histogram decreased in the number of pixels 
in the median, Wiener and Lee filters as the filter window 
size increased. There was increase in the number of pixels 

Figure-1: The study flowchart. 
MSE: Mean square error, NAE: Normalised absolute error, SNR: Signal-to-noise ratio 
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Figure-2: Ultrasound images of (a) kidney and (b) foetus, with speckle noise images (c and d) and ratios from 0.01 to 0.06. Speckle noise images were smoothed by median, Wiener, 
Lee, Frost and Kuan filters for (e) kidney and (f) foetus images.
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Figure-3: Histogram of the smoothed image with different window sizes.
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Figure-4: Statistical data with different window sizes.

in the Frost and Kuan filters as the size of the filter window 
increased or the noise ratio increased (Figure 3). 

Statistical data with different window sizes was noted 
(Figure 4). 

Discussion 
The Wiener filter had lower value than ELee, Lee, Frost, 
median (3x3), Gamma, EFrost and Kuan using MSE criteria. 
Median 3x3 had lower value than Wiener, ELee, Lee, Frost, 
Gamma, EFrost and Kuan using NAE. Wiener had higher 
value than ELee, Lee, Frost, Median (3x3), Gamma, EFrost 
and Kuan using SNR.  

Wiener had lower value than median (3x3), ELee, Gamma, 
EFrost, Lee, Frost and Kuan using MSE criteria. Wiener had 
lower value than median (3x3), ELee, Gamma, EFrost, Lee, 
Frost and Kuan using NAE.  Wiener had higher value than 
ELee, Lee, Frost, median (3x3), Gamma, EFrost and Kuan 
using SNR criteria. The results can be compared with 
other publications, although they used different source of 
images9. They used almost the same filters and same 
sliding window size which makes it possible to compare 

the findings. The behaviour of the sliding windows had 
the same behaviour9. 

Limitation: The current study has limitations as the 
sample size was not calculated. 

Conclusion 
The behaviour of the filter changed. The sliding filter 
window (3x3, 5x5, and 7x7) had some effect on the output 
of the enhancement. Median, Wiener, Gamma and EFrost 
filters were unaffected by increased noise ratio in the 
image, but were affected by the increase in the filter 
window size. The best results for the criteria were with 
filter window size 3x3 which had lower values in MSE 
around 100au and NAE around 1.8au, while it had higher 
values in SNR around 23au. As the size of the filter window 
increased, the value of the criteria decreased, indicating 
that the noise effect was reduced. For MSE, NAE and SNR, 
the best results came with the lower value of MSE, while 
SNR gave better results with higher value of the criteria 
around 23au. 
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