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Ultrasound image smoothing based on adaptive and non-adaptive filters
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Abstract
Objective: To model adaptive and non-adaptive filters to ensure smooth ultrasound images.
Method: The comparative study was conducted at Al-Yarmouk Teaching Hospital, Al Mustansiriyah University,
Baghdad, Iraq, in 2019, and comprised ultrasound images of kidney (303x208 pixel) and foetus (111x109 pixel).
These images were smoothed based on 8 filters; 1 non-adaptive (median), and 7 adaptive enhanced filters (Gamma,
Wiener, Lee, Frost, Kuan, Adaptive Lee and Adaptive Frost). They were applied to the images by windows measuring
3x3, 5x5, 7x7. The additive noise and the multiplicative noise factor were calculated using histogram to determine
the noise type for each image. Statistical criteria included mean square error, normalised absolute error and signal-
to-noise ratio.
Result: The relationship between noise ratio and filter type showed that Wiener was the best filter and the best
sliding window was 3x3. The worst filters were Gamma, EFrost and Kuan.
Conclusion: The relationship between sliding window size and noise ratio for all the smoothing filters clearly
identified the best filter for the type of noise.
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Introduction studied in details such as spatial filtering, diffusion

Digital images are used as information source in many
research fields'2. Unfortunately, similar to other digital
signals, digital images are also sometimes unintentionally
corrupted by unwanted signals, called noise34. Digital
images play an important role both in daily life
applications, such as satellite television and medical
imaging>56, as well as in areas of research and technology,
such as geographical information systems (GIS) and
astronomy’. Digital images are often corrupted by
different types of noise during the acquisition and
transmission phases89. Such degradation negatively
influences the performance of many image processing
techniques, and a pre-processing module to filter the
images is often required’0. Noise removal is one of the
major concerns in the field of computer vision and image
processing. The goal of removing noise is primarily to
suppress the noise as well as to preserve the integrity of
edges and detailed information'!. In the field of digital
image processing, two applications of great importance
are noise filtering and image enhancement'2. A model of
speckle noise reduction with various filters is basically
used for speckle elimination. Smoothing or elimination of
speckle noise in medical ultrasound images have been
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filtering, and wavelet filtering. For instance, Manoj et al.'3
used computed tomography (CT) images to manage the
noise using Bayes shrinkage rule in Shearlet domain.
Hyunho et al.# studied speckle-reducing anisotropic
diffusion (SRAD) and a Bayes threshold in the wavelet
domain. They used signal-to-noise ratio (SNR) to show the
quality of the enhancement algorithm as a criterion.
Carlos et al.'s used full-reference distortion metrics and
filter evaluation process to have ouput certainty.

The current study was planned to model adaptive and
non-adaptive filters to ensure smooth ultrasound images.

Materials and Methods

The comparative study was conducted at Al-Yarmouk
Teaching Hospital, Al Mustansiriyah University, Baghdad,
Iraqg, in 2019, and comprised ultrasound images of kidney
(303x208 pixel) and foetus (111x109 pixel). These images
were smoothed based on 8 filters; 1 non-adaptive
(median), and 7 adaptive enhanced filters (Gamma,
Wiener, Lee, Frost, Kuan, Adaptive Lee and Adaptive
Frost). They were applied to the images by windows
measuring 3x3, 5x5, 7x7. Methods of noise removal can be
both linear and non-linear. Linear methods are fast
enough, but do not preserve image detail, and nonlinear
methods preserve image detail. De-noising filters
(smoothing techniques) can be classified into two kinds of
filters: non-adaptive filters which can directly apply to the
noisy images without the need for any prior knowledge
on the statistical relationship governing the image
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points'é17, and adaptive filters that are used to smooth
speckle multiplicative noise in ultrasound images'819,

Wiener filter involves linear estimation of a desired image
data sequence from another related sequence. Wiener
method implements spatial smoothing and its model
complexity control corresponds to the window size. Lee’s
filter exploits the local statistics within the image region
to reduce both additive and multiplicative noise in
different images.

Additive noise smoothing filter has the model:
I(x,y)=R(x,y)+n(x,y) in which I(x,y), R(x,y), and n(x,y)
represent the observed image, and the original with
mean value equal to zero, respectively.

However, small window size results in an undesirable
smoothing. It is our opinion, that 3x3 or 5x5 or 7x7
window sizes are the most effective, and if the noise
reduction is not significant, the filter can be run
recursively.

Multiplicative noise smoothing filter mathematically is
presented by the equation I(x,y) = R(x,y).F(x,y) in which
I(x,y) and R(xy) define earlier and F(x,y) represents the
signal independent multiplicative noise.

An optimal linear approximation can be used to produce
a new filtration algorithm similar to that adopted by
additive noise model. This linear approximation can be
introduced as20 I(x,y) = R(x,y) F +R (x,y).(F(x,y)-F in which F
" represents the mean of the multiplicative noise. The
priori mean and variance of R(xy) can, then, be
approximated by

I x,¥
R = —
XV E
and
2 2
oy x,y - I“"xy 5
Qxy = - R
oZ - F2

in which | (x, y) and o_IA2 (x,y) represent the local mean
and the local variances of I(x,y), while _FA2 is the noise
variance. Substitutions in the equation lead to the
approximation of the ungraded image with

R(x%y)=R{xy) +Kxy)l xy - Rxy .Finwhich

Qxy.F
R x,y .0f + F2Q x,y

Kxy =
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In fact, Luis et al.2" modified the mentioned filters by
adding another improvement factor to improve the
smoothing process by incorporating the local gradient
information to decide as to which part of the utilised
window the centre point belonged.

Kuan filter is a local linear minimum mean square error
(LLMMSE) filter based on the non-stationary mean and
non-stationary variance (NMNV) image model. While the
NM describes the gross structures in an image, the NV
characterises the edge structures and the elementary
textured information within the image. The observed
image, by Kuan's model is:

[(x,y)=R(x,y)+n(x,y) in which n(x)y) is zero mean noise,
which can be considered signal-dependent or signal-
independent. However, the local linear minimum mean
square error (MSE) filter estimates the smooth value in an
ultrasound image by22:

R x,y)=R (x,y)+ [(K_R K) _IA(-1) [I(x,y)-I (x,y)]  in which
KRI and Kl represent the cross-covariance matrix of R(x,y)
and I(x,y), and the covariance matrix of I(x,y), respectively.
This filter can be implemented to reduce image noise of
both signal-independent and signal-dependent types.

Using the the equation

Rxy = kik,CZ %y I Lk e %t xy x- 14 y- k

, the requirements for performing this filter is achieved by
determining the local coefficient of variation, i.e. Cl (x, y),

Ow X, ¥
o XY =Ry

in which w (x,y) and o_w (x,y) represent, respectively, the
mean and standard deviation (SD) of the considered
random variables (x,y). This parameter, however, can be
used as an indicator for the homogeneity of regions
within the ultrasound images, and, therefore, can be
utilised to control the speckle reduction process in an
adaptive smoothing filter.

The designed algorithm in Matlab software for all
smoothing filters has 7 steps: Step 1: load ultrasound
image (I)= imread(img). Step2: Passing the smoothing
filter over the image(l). J = smooth filter (I, [sz sz]); where
sz is filter window size. Step4: Calculate the additive noise
between the filtered image and the original image using
additive noise factor=Il-J. Step5: Calculate the
multiplicative noise between the filtered image and the
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original image using multiplicative noise factor=l. /J.
Step6: Plot histogram image for original image and
filtering image imhist (I or J). Step7: Plot histogram for
additive and multiplicative noise hist (N) where N= noise

type.

There are objective evaluations for judging the effect of
noise reduction to evaluate the quality of the
performance of each filtering method, and the differences
between the original image g(x, y) and the filtered image
f(x,y) can be quantified by many parameters, such as MSE,
which can be expressed by the equation23:

MSE=1/(mxn)) (x=1"mi}) (v
= )= [((Fx y) — €100 y)]"2 ]

in which g“(x,y) is processed image after noise reduction
from noise-polluted image g(x,y), and it should be smaller
for better noise reduction. The MSE has been widely used
to quantify image quality. When it is used alone, it does
not correlate strongly enough with perceptual quality. It
should be used together with other quality metrics and
visual perception 2425, SNR is calculated as

m n

fxy?

x=1y=1 fX,y - 8XY

in which f(x, y) is pure ideal image not polluted by noise,
g(x, y) is captured image polluted by noise, the image size
is m rows times n lines. The bigger value of the SNR refers
to better noise reduction effect. The SNR has been proved
to be a very sensitive test for image degradation, but is
completely non-specific. Any small change in image noise
by de-speckling would cause an increase in the SNR.

The normalised absolute error (NAE) measure is defined
as

Large NAE value means de-noised image is of poor quality
26,27,

The designed algorithm for the criterion has 7 steps:
Step1: Load ultrasound image or added-noise image
(img1) and read img1; IT=imread(img1). Step2: Load
filtering image (img2) and read img2; 12 =imread(img?2).
Step3: Display I1 and 12. Step4: Calculate criteria between
11&I2 MSE = immse(l1, I2). Step5: Calculate NAE between
11&12 NAE = sum(sum((K)))./sum(sum((I1))); where K=
imabsdiff(11, 12) and imabsdiff is function expressing
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Statistical quality measures: SNR. MSE, and NAE

Figure-1: The study flowchart.
MSE: Mean square error, NAE: Normalised absolute error, SNR: Signal-to-noise ratio

absolute difference between two images. Step7: Calculate
SNR; snr = snr(l1, 12).

The detailed algorithm was noted (Figure 1).

Results

Kidney ultrasound image size was 303x208 pixel with
pixel depth 24 bit, and the ultrasound image of foetus was
of size 696x486 pixel with pixel depth 24 bit. Surface
structures, such as in the foetal image, were at frequency
7-18 MHz to provide better axial and lateral resolution.
The kidney image was taken at a frequency of 1-6MHz
with lower focal and lateral resolution, but with greater
penetration.

Speckle noise was added with per cent from 0.01 to 0.06
to the images used, and the added noise made the image
difficult to enhance. Smoothing of the ultrasound images
using median, Weiner, Lee, Frost, Kuan filters with
window size 3x3, 5x5 and 7x7 showed that the noise
smoothing behaviour was the same for all noise per cent
in the 3x3 sliding window for both median and Weiner
filters for all noise ratios. For sliding window 5x5 and 7x7,
the noise behaviour was the same in the image. This
behaviour was different with the remaining filters
(Figure 2).

Smoothing histogram decreased with the number of
pixels in the median, Wiener, Lee and Kuan filters as the
filter window size increased. There was increase in the
number of pixels in the Frost filters as the size of the filter
window increased or the noise ratio increased.
Smoothing histogram decreased in the number of pixels
in the median, Wiener and Lee filters as the filter window
size increased. There was increase in the number of pixels
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Figure-2: Ultrasound images of (a) kidney and (b) foetus, with speckle noise images (c and d) and ratios from 0.01 to 0.06. Speckle noise images were smoothed by median, Wiener,
Lee, Frost and Kuan filters for (e) kidney and (f) foetus images.
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Figure-3: Histogram of the smoothed image with different window sizes.
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Figure-4: Statistical data with different window sizes.

in the Frost and Kuan filters as the size of the filter window
increased or the noise ratio increased (Figure 3).

Statistical data with different window sizes was noted
(Figure 4).

Discussion

The Wiener filter had lower value than ELee, Lee, Frost,
median (3x3), Gamma, EFrost and Kuan using MSE criteria.
Median 3x3 had lower value than Wiener, ELee, Lee, Frost,
Gamma, EFrost and Kuan using NAE. Wiener had higher
value than ELee, Lee, Frost, Median (3x3), Gamma, EFrost
and Kuan using SNR.

Wiener had lower value than median (3x3), ELee, Gamma,
EFrost, Lee, Frost and Kuan using MSE criteria. Wiener had
lower value than median (3x3), ELee, Gamma, EFrost, Lee,
Frost and Kuan using NAE. Wiener had higher value than
ELee, Lee, Frost, median (3x3), Gamma, EFrost and Kuan
using SNR criteria. The results can be compared with
other publications, although they used different source of
images®. They used almost the same filters and same
sliding window size which makes it possible to compare

J Pak Med Assoc (Suppl. 8)

the findings. The behaviour of the sliding windows had
the same behaviour®.

Limitation: The current study has limitations as the
sample size was not calculated.

Conclusion

The behaviour of the filter changed. The sliding filter
window (3x3, 5x5, and 7x7) had some effect on the output
of the enhancement. Median, Wiener, Gamma and EFrost
filters were unaffected by increased noise ratio in the
image, but were affected by the increase in the filter
window size. The best results for the criteria were with
filter window size 3x3 which had lower values in MSE
around 100au and NAE around 1.8au, while it had higher
values in SNR around 23au. As the size of the filter window
increased, the value of the criteria decreased, indicating
that the noise effect was reduced. For MSE, NAE and SNR,
the best results came with the lower value of MSE, while
SNR gave better results with higher value of the criteria
around 23au.
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