The 16th scientific international conference S-306

RESEARCH ARTICLE

Dosimetry evaluation of photon beam profile characteristics for different treatment parameters of quality assurance

i Taghreed Ahmed Nghaimesh¹, Siham Sabah Abdullah², Hadeel Kamil Abdullah³, Abdulrahman Mohammed Abdulbagi⁴

Abstract

Objective: To compare beam profiles of MatriXX scanning system and water phantom for different treatment parameters.

Method: The cross-sectional study was conducted at Al-Amal National Hospital for Cancer Treatment, Baghdad, Iraq, from November 2020 to March 2021. Beam data for 6MV and 10MV photon beams generated from the linear accelerator was utilised at field sizes 20×20cm², 15×15 cm², 10×10cm² and 5×5cm² at depth 10 and source-to-skin distance 100cm. Data was obtained for both water phantom and MatriXX system. The dose distribution for the two systems were compared. Data was analysed using SPSS 24.

Results: The 32 measures taken were all related to symmetry and flatness. Flatness data indicated that all measurements were within tolerance except for cross line plane variations in 10x10cm² field size with 6MV energy (-3.81%) and 5x5cm² field size with 10MV energy (-3.01). Symmetry data revealed all measurement differences were within tolerance.

Conclusion: MatriXX system could also be used for routine photon profile measurements as a substitute for water phantom.

Key Words: Water, Photons, Phantoms, Imaging.

(JPMA 74: S306 (Supple-8); 2024) DOI: https://doi.org/10.47391/JPMA-BAGH-16-70

Introduction

Radiation therapy is one of the important components of cancer treatment that involves utilising high-energy radiation to kill or change the genes of cancerous cells, causing them to stop growing. As the energy beams travel through the body to reach the cancer cells, passing through the tumour before ultimately departing the body, they effect even the healthy cells along their journey^{1,2}. The goal of radiotherapy is to administer enough radiation to kill the tumour cells while keeping the radiation energy low enough to stay away from the adjacent tissues^{3,4}.

Medical physicists working in radiation therapy departments encounter a variety of obstacles, like precision challenges, a wide range of assessment methodologies, a lack of standards, data validation and tight deadlines. Also, it is critical that the acquired beam data is of high quality in order to minimise errors in dosimetry and patient treatment, which could result in a poor radiation outcome ⁵.

¹Al-Zafaraniya General Hospital, Iraq Ministry of Health, Baghdad, Iraq.² Department Physiology and Medical Physics, Al-Nahrain University, Baghdad, Iraq.³⁻⁴Al-Amal National Hospital for Cancer Treatment, Baghdad Medical City, Iraqi Ministry of Health, Baghdad, Iraq.

Correspondence: Taghreed Ahmed Nghaimesh

Email: tagredahmed663@gmail.com

The photon beam is the most often utilised radiation therapy technique. The assessment of energy absorbed in tissues is crucial to the biological impact of radiation. Its goal is to examine the depth dosage characteristics of X-ray beams of various energies in order to improve treatment planning efficiency ⁶. The purpose of a linear accelerator quality assurance (QA) programme is to ensure that the machine characteristics do not vary substantially from respective reference values obtained at the time of approval and commissioning⁷. In radiation therapy, the dosage distribution of photon and electron beams is identified and evaluated using water phantom devices⁸.

Because the entire radiation space is assessed, MatriXX two-dimensional (2D) array detectors may provide 2D dose distribution from single exposure, making information acquirement faster, and investigation of those beam parameters more comprehensive ^{9,10}. The key parameters that define the quality of a linear accelerators photon beam are flatness and symmetry. The physical characteristics of treatment administration are unquestionably important in ensuring the quality of routine clinical radiation practice and, consequently, the treatment outcome¹¹.

The current study was planned to examine if MatriXX 2D array can be utilised for quality assurance of linear accelerator instead of the water phantom.

J Pak Med Assoc (Suppl. 8) Open Access

S-307

The 16th scientific international conference

Materials and Methods

The cross-sectional study was conducted at Al-Amal National Hospital for Cancer Treatment, Baghdad, Irag, from November 2020 to March 2021. The linear accelerator model employed was Infinity (Elekta, Sweden), which generates photon beams of 6MV and 10MV for deep-seated cancers, as well as electron beams with energies of 4, 6, 8, 10, 12 and 15MeV for superficial therapy of cancer tumours and other malignancies. The multi-data scanning system water phantom (Model 90592, IBA Dosimetry, Germany) used was a large motorised phantom with a detector moving range of up to 60cm that allowed for total scatter contribution for a 40x40cm² field size data. The system can scan cross-plane and in-plane beam data as well as diagonal and in-depth (z) direction. In order for beam scanning to be performed, the water phantom must be filled to a depth of 30cm. MatriXX (IBA dosimetry, Germany) is a 2D detector designed for megavoltage dosimetry. A 1020-detector pixel ionisation chamber array is used. The detectors are 0.76cm apart and cover 23. ×23.6cm² in total. Each ion chamber is a vented parallel plate chamber with diameter of 0.45cm, height of 0.5cm, and a sensitive volume of 0.08cm3. Measurements were carried out for the energies of 6MV and 10MV photon beams with varying field sizes, like 20×20 cm², 15×15 cm², 10×10 cm² and 5×5 cm², at the depth 10cm and source-to-skin distance (SSD) of 100cm.

Photon beams were assessed with 6MV and 10MV energies with similar field sizes at the depth of 10cm. Flatness and symmetry studies revealed that flatness of photon beams derived from MatriXX was within the tolerance limits of +/-3% and photon beams symmetry was within the tolerance limits of +/-5%.

The flatness was evaluated by finding the maximum (Dmax) and minimum (Dmin) dose point values on the beam profile within the central 80% of the beam width. Typically, the symmetry is calculated at Dmax, which is the most sensitive depth to evaluate this parameter of beam uniformity.

The flatness and symmetry of the beam's radiation field were evaluated using the following equations¹²:

Flatness (%) =
$$\frac{Dmax}{Dmin}$$
 100%

$$Symmetry = \frac{area\ left-area\ right}{area\ left+area\ right} \times 100\%$$

Data was analysed using SPSS 24. Data was presented as percentages, and the difference between the two systems was calculated. The tolerance of all readings was ± 3 as per the International Electrotechnical Commission (IEC) guidelines 12.

Results

Of the 32 measurements obtained, 16(50%) each were for flatness and symmetry.

Flatness data showed that all the differences in measurement were within the tolerance limit except in crossline plane 10×10cm² field size with 6MV energy (-3.81%) and 5×5cm² field size with 10MV energy (-3.01) (Table 1).

Table-1: Flatness measurements comparison between water phantom and MatriXX systems.

Field size (cm)	Inline plane flatness (%) at 6 MV energy			
	Water Phantom	MatriXX	Difference	Tolerance
5 cm x 5 cm	104.70%	103.22%	-1.48%	± 3 %
10 cm x 10 cm	103.20%	105.45%	2.25%	± 3 %
15 cm x 15 cm	103.20%	105.63%	2.43%	±3%
20 cm x 20 cm	103.70%	105.54%	1.84%	±3%
Field size (cm)	Crossline plane flatness (%) at 6 MV energy			
	Water Phantom	MatriXX	Difference	Tolerance
5 cm x 5 cm	104.80%	104.80%	0.00%	± 3 %
10 cm x 10 cm	103.20%	107.01%	-3.81%	± 3 %
15 cm x 15 cm	103.10%	105.36%	-2.26%	±3%
20 cm x 20 cm	102.50%	104.10%	-1.60%	± 3 %
Field size (cm)	Inline pla	ne flatness (%) at 10 MV en	erav
,	Water Phantom	MatriXX	Difference	Tolerance
5 cm x 5 cm	101.50%	103.41%	-1.91%	±3%
10 cm x 10 cm	104.30%	106.48%	-2.18%	±3%
15 cm x 15 cm	104.50%	105.86%	-1.36%	±3%
20 cm x 20 cm	105.30%	105.80%	-0.50%	± 3 %
Field size (cm)	Crosslina	alano flatnos	s (%) at 10 MV e	norav
riciu size (ciii)	Water Phantom	MatriXX	Difference	Tolerance
			3	. Jieiuiie
5 cm x 5 cm	102.00%	105.01%	-3.01%	±3%
10 cm x 10 cm	104.00%	106.53%	-2.53%	±3%
15 cm x 15 cm	103.40%	104.06%	-0.66%	±3%
20 cm x 20 cm	103.60%	103.82%	-0.22%	±3%

Symmetry data showed that all the differences in measurement were within the tolerance limit (Table 2).

The 16th scientific international conference S-308

Table-2: Symmetry measurements between the study groups..

100.90%

100.90%

101.10%

Field size (cm)	Inline plane flatness (%) at 6 MV energy			
	Water Phantom	MatriXX	Difference	Tolerance
5 cm x 5 cm	103.50%	100.51%	2.99%	±5%
10 cm x 10 cm	100.90%	100.87%	0.03%	±5%
15 cm x 15 cm	101.60%	101.06%	0.54%	$\pm5\%$
20 cm x 20 cm	101.90%	101.90%	0.00%	±5%
Field size (cm)	Crossline plane flatness (%) at 6 MV energy			
	Water Phantom	MatriXX	Difference	Tolerance
5 cm x 5 cm	103.40%	101.81%	1.59%	+5%

Field size (cm)	Inline plane flatness (%) at 10 MV energy			
	Water Phantom	MatriXX	Difference	Tolerance
5 cm x 5 cm	101.40%	101.14%	0.26%	±5%
10 cm x 10 cm	102.90%	102.49%	0.41%	±5%
15 cm x 15 cm	103.20%	102.79%	0.41%	±5%
20 cm x 20 cm	102.80%	102.95%	-0.15%	±5%

103.13%

101.65%

100.90%

-2.23%

-0.75%

0.20%

+5%

 $\pm 5\%$

 $\pm 5\%$

Field size (cm)	Crossline plane flatness (%) at 10 MV energy			
	Water Phantom	MatriXX	Difference	Tolerance
5 cm x 5 cm	101.40%	102.06%	-0.66%	±5%
10 cm x 10 cm	102.30%	102.35%	-0.05%	$\pm5\%$
15 cm x 15 cm	101.00%	100.73%	0.27%	±5%
20 cm x 20 cm	100.90%	100.55%	0.35%	$\pm5\%$

Discussion

10 cm x 10 cm

15 cm x 15 cm

20 cm x 20 cm

MatriXX and water phantom beam profile flatness for 6MV and 10MV photon beams compared well with the recommended 3% limit except for the field size 10×10cm² crossline for 6MV where there was slight difference from the limits. This could be due to the inherent build-up in MatriXX, (0.9cm build-up), which has a density similar, but not identical to water.

The current results showed agreement with Moji K M. et al¹⁰, who reported similar inline and crossline flatness data.

In terms of symmetry, MatriXX data was well within the limit for inline and crossline planes compared to the quality of water phantom symmetry attained for 6MV and 10MV. The findings were consistent with those reported by Hassan S., et al.,¹¹.

The establishment of an appropriate standard for beam profile measurements is problematic. On the other hand, beam symmetry is easily defined. However, the flatness of

the beam depends on the dimensions and shape of the measurement phantom. At the time of commissioning an accelerator, it is essential to select a beam profile that suits the accelerator's specification. Subsequently, it is important to ensure that the profile did not change significantly afterward^{13,14}.

MatriXX is easy to set up on the couch of the linear accelerator. Unlike the water phantom, MatriXX works without scanning movement because it consists of an array detector having 1020 stationary ion chambers with 7.62mm distance from centre to centre. However, MatriXX needs onsite ion chamber recalibration every 3-6 months.

Conclusion

MatriXX could be utilised in place of a water phantom to assess the quality assurance of linear accelerator.

Acknowledgment: We are grateful to the administration of Al-Amal Hospital for Cancer Treatment, and to the Department of Medical Physics, especially to physicists Ahmed Ali Hameed and Mohamed Jafer Rashed, for facilitating the study.

Disclaimer: None.

Conflict of Interest: None. **Source of Funding:** None.

References

- Pohl HG, Shukla AR, Metcalf PD, Cilento BG, Retik AB, Bagli DJ, et al. Prepubertal testis tumors: actual prevalence rate of histological types. J Urol 2004;172:2370-2. doi: 10.1097/01.ju.0000144402.13556.74.
- Al-Hakkak SAR, Al-Musawi M, Mohammad AR. Assessment effect of lumpectomy in the treatment of breast tumors when using VMAT technique. Onkol Radioter 2023;17:294-8.
- Jiang SB, Sharp GC, Neicu T, Berbeco RI, Flampouri S, Bortfeld T, et al. On dose distribution comparison. Phys Med Biol 2006;51:759-76. doi: 10.1088/0031-9155/51/4/001.
- Buzdar SA, Rao MA, Nazir A. An analysis of depth dose characteristics of photon in water. J Ayub Med Coll Abbottabad 2009;21:41-5.
- Klein EE, Hanley J, Bayouth J, Yin FF, Simon W, Dresser S, et al. Task Group 142, American Association of Physicists in Medicine. Task Group 142 report: quality assurance of medical accelerators. Med Phys 2009;36:4197-212. doi: 10.1118/1.3190392.
- Smit K, Sjöholm J, Kok JG, Lagendijk JJ, Raaymakers BW. Relative dosimetry in a 1.5 T magnetic field: an MR-linac compatible prototype scanning water phantom. Phys Med Biol 2014;59:4099-109. doi: 10.1088/0031-9155/59/15/4099.
- Bakhtiari M. Effect of surface waves on radiotherapy dosimetric measurements in water tanks. J Med Phys 2011;36:230-3. doi: 10.4103/0971-6203.89972.
- 8. Akino Y, Ota S, Inoue S, Mizuno H, Sumida I, Yoshioka Y, et al. Characteristics of flattening filter free beams at low monitor unit settings. Med Phys 2013;40:112101. doi: 10.1118/1.4824920.
- Faraj MK, Al-Musawi MS, Ali Abdulameer T. Design and manufacturing of a head mask for fixation in stereotactic radiosurgery by the Gamma Knife® Icon™. Surg Neurol Int

J Pak Med Assoc (Suppl. 8) Open Access

S-309 The 16th scientific international conference

- 2023;14:188. doi: 10.25259/SNI_1053_2022.
- Moji KM. Comparison of measured photon and electron beam dose distributions between 3D water phanton and profiler 2 scanning system, South Africa. Polokwane, South Africa: University of Limpopo (Medunsa Campus); 2014. [Online] 2014 [Cited 2024 July 8]. Available from URL: http://ulspace.ul.ac.za/handle/10386/1086.
- Hassn S, Deiab NA, Aly AH. Dosimetric study of photon beam characteristics with 2d array and water phantom measurement. Int J Radiat Res 2020;18:167-72. DOI:10.21608/ajnsa.2019.13053.1217.
- Büthe T, Alshadafan AF. The International Electrotechnical Commission: A 115-Year Journey of Challenges, Change, and

- Resilience. In: Delimatsis P, Bijlmakers S, Borowicz MK, eds. The Evolution of Transnational Rule-Makers through Crises, 1st ed. Cambridge, UK: Cambridge University Press; 2023. doi: 10.1017/9781009329408
- Alani EA, Al-Musawi MS, Mahdi AH. Evaluation The Role Of Vitamin C As A Radiation Protective Agent Using -H2ax For Signaling Of DNA Damage On Irradiated Mice Testis. Per Tchê Quim 2020;17:128-39. DOI:10.52571/PTQ.v17.n36.2020.144_ Periodico36_pgs_128_139.pdf.
- Al-Alani EA, Al-Musawi MS, Mahdi AH. Influence of vitamin C on irradiated mice tissues induced DNA double strand breaks DSB using gH2AX marker. J Pak Med Assoc Dec 2021;71(Suppl 8):s117-22...

Open Access Vol. 74, No.10 (Suppl. 8), October 2024