

Molecular detection of virulence genes in pseudomonas aeruginosa isolated from different clinical infections

Enass Abdul Kadhum Almkhadhree¹, Kawther Adnan Algaseer², Khairi Jameel AlRuaby³

Abstract

Objective To isolate *pseudomonas aeruginosa* from different clinical specimens, and to detect virulence factors. **Method**: The cross-sectional study was conducted at Al-Zharr Hospital and private clinics in Kut city of Wasit province in Iraq from October 15, 2021, to April 30, 2022, and comprised samples obtained from different patient sites, such as wound swabs, ear swabs, urine samples, burn swabs and respiratory tract swabs. The samples were subjected to molecular testing using, among other tools, polymerase chain reaction. The isolates were cultured on different media, such as blood agar, MacConkey agar and cetrimide agar, and were further diagnosed by biochemical testing. Data was analysed using SPSS 20.

Results: Of the 212 samples, there were 70(33%) wound swabs, 53(25%) ear swabs, 41(19.3%) urine samples, 33(15.6%) burn swabs and 15(7%) respiratory tract swabs. Pseudomonas aeruginosa was identified in 54(25.47%) isolates via culture-based characterisation. All 54(100%) isolates were positive for mexR and toxA on polymerase chain reaction, 44(81.48%) were positive for exoU gene, 43(79.62%) for exoT gene, 36 (66.66) for exoT gen, 35(64.81%) for plcH, gene and 14(25.92%) for exoS gene.

Conclusions: Wound swabs were found to be the most common site for *pseudomonas aeruginosa*, followed by ear swabs and urine samples.

Keywords: *Pseudomonas aeruginosa*, Virulence, Agar, Cetrimonium, Virulence, Burns, Polymerase chain reaction, DNA. **DOI:** https://doi.org/10.47391/JPMA.IQ-13

Introduction

Pseudomonas (P.) aeruginosa is a gram-negative bacillus belonging to the Pseudomonadaceae bacterial family. It has a diameter of around 1mm (1.5-3.0 x 0.5m) in length, is motile due to one or more polar flagella, and is non-sporeforming and non-capsulated.1 P. aeruginosa is a strict aerobe and these aerobes can be found as single cells, in pairs, or as short chains.² As it is commonly found in the environment and can cause a wide range of illnesses in humans, animals and plants, P. aeruginosa is regarded as a significant bacterial species. Additionally, microorganisms that are thought to be a cause of nosocomial infections are more significant.³ P. aeruginosa causes several diseases in the human body, such as infections of the skin, burns, eyes, urinary tract, otitis media, bacteraemia as well as bones and joints.4 It can secrete many toxic proteins that are believed to act as virulence factors; these proteins can cause extensive tissue damage and result in invasion of the bloodstream.⁵ The exotoxin A (exoA), which shares the same mechanism of action as the diphtheria toxin, is a crucial component of the pathogenicity of *P. aeruginosa*. Localised tissue injury, bacterial invasion and immunosuppression are all caused by exoA.6

P. aeruginosa is naturally resistant to several antibiotic agents due to mutational changes or via the acquisition of genetic materials that provide resistance. The appearance of multidrug resistant (MDR) strains can occur as a result of the selective pressure caused by anti-microbial therapies, and the acquired multidrug resistance to many antibiotics results in an increased morbidity and mortality rate following infection.^{7,8} Due to decreased membrane permeability, anti-microbial agent efflux pumps and acquired susceptibility by the development of resistance genes, P. aeruginosa has a high level of anti-microbial drug resistance in addition to its virulence factors that also contribute towards drug resistance.9 The rise of MDR P. aeruginosa poses a public health risk by limiting the number of effective antibiotic treatments commercially available. Antibiotic-resistant bacteria are on the rise across the world, posing a serious threat of treatment failure. 10 The current study was planned to isolated P. aeruginosa and to detect various virulence factors.

Materials and Methods

The cross-sectional study was conducted at Al-Zharr Hospital and private clinics in Kut city of Wasit province in Iraq from October 15, 2021, to April 30, 2022. approval was

Corrospondience: Khairi Jameel Al Ruaby email: khairi.iraq2009@gmail.com

^{1,3}Department of Biology, College of Science, Wasit University, Iraq;

²Department of Basic Science, University of Kufa, Iraq.

obtained from Wasit Health Director to conduct the study

Using simple random sampling technique, patients of either gender were enrolled for obtaining specimens from wound swabs, ear swabs, urine samples, burn swabs and respiratory tract swabs. The sample size was calculated using the formula:¹¹

$$\frac{z_{1-\alpha/2}^{2}p^{(1-p)}}{d^{2}}$$

Standard normal variate Z_{1-a}/2 was 1.96 at 5% type 1 error (p=0.05) and 2.58 at 1% type 1 error (p=0.01). As p<0.05 are typically regarded as significant in research, 1.96 was utilised in the formula in which p was the population expected proportion based on a previous study,¹² and d was the absolute inaccuracy or precision determined by the researchers.

Cotton swabs were used to take samples from the patients. Once obtained, they were cultured on several different media, such as blood agar, MacConkey agar and cetrimide agar, the latter being a selective medium for P. aeruginosa. The samples were incubated at 37°C for 24 hours after which cultured bacteria were isolated and identified according to colony morphology, shape, size, colour and pigment production.

Deoxyribonucleic acid (DNA) extractions were carried out using a commercial kit (Presto™ Mini gDNA Bacteria Kit, Geneaid, Thailand) to obtain DNA templates for use in PCR assays. The DNA of *P. aeruginosa* isolates was extracted as per the manufacturer's instructions.

For cell harvesting pre-lyses, the bacterial strains were cultured on cetrimide agar for 18 hours at 37°C. Then, they were harvested by centrifugation for 1 minute at a speed of 14,000rpm, with the supernatant being discarded.

Further, 20µL of proteinase potassium (K) (solution and 180µL of buffer Guanidinium thiocyanate (GT) were added to the pellet and mixed, with the sample tubes inverted every 3 minutes for the duration of the incubation period.

After mixing for 10 seconds with 200µL of buffer Guanidine Brochloride (GB), the cell lysate was incubated for 10 minutes at 70°C, with sample tubes mixed by inversion every 3 minutes to induce lysis. The elution buffer was preheated 200 l/sample at 70°C for DNA elution.

For DNA binding, the lysate samples were treated with $200\mu L$ of 100% ethanol and thoroughly mixed by shaking. The mixture was transferred to a spin column in a 2ml collection tube, and placed in a new 2ml collection tube for the genome DNA (GD) column.

For DNA elution, the spin column was placed in a 1.5 microcentrifuge tube, and 100μ L of pre-heated elution buffer was added to the middle of the column matrix. After letting the mixture stand for 3 minutes to ensure that all of the elution buffer had been absorbed, the spin column was centrifuged for 30 seconds at 14,000rpm to elute the purified DNA. The extracted DNA was stored in the freezer at -20°C until use.

The concentration and purity of the DNA was measured by using an instrument (Nano Drop) and agarose gel electrophoresis.

During the process, $1\mu l$ of the extracted DNA was added to the instrument in order to detect DNA concentration and purity by analysing the optimal degree) OD((260/280 ratio to verify the protein and DNA concentration.

For agarose gel electrophoresis, 1x Tris-borate-EDT(TBE) buffer was placed in the electrophoresis tank, after which the agarose tray was immersed in the electrophoresis tank. It was ensured that the buffer was roughly several millilitres above the agarose surface. Each well was filled with 5μ l of the sample and 2μ l of dye, and the tank was then filled and closed. Electrophoresis was performed using 70 volt/cm of gel run swat electrophoresis. With the use of gel paper, the agarose was extracted from the tank and visualised.

Optimization of the PCR primers was done via temperature gradients. Temperature gradient PCR assays are reactions performed using different temperatures of annealing. This assay was performed to identify the optimum annealing temperatures of the various primers that were used to detect *P. aeruginosa*.

For the optimization of the primers used, 2.5µl of the master mix was mixed with 5-6µl of DNA, along with 1µl of the forward and revers primers. Optimisation was programmed for enterotoxin A (toxA), enterotoxin S (exoS), enterotoxin Y (exoY), enterotoxin U(exoU), enterotoxin T(exoT), multi-drug resistance (mexR) and haemolysinphosphlipase (plcH), and primer of gene grades were chosen, and the annealing temperature of PCR were set at 55°C, 58°C and 52°C.

Detection of toxA, exoS, toxY, toxU, toxT, mexR, plcH genes was carried out by mixing 12.5ml master mix, 5-6ml DNA, 1ml each of forward and reverse primers, and nuclease-free deionised water to a final volume of 20ml, as per the manufacturers' instructions.

PCR cycling programme parameters used in the reaction for the detection of the genes of interest were noted (Tables 1-3).

Data was analysed using SPSS 20. Chi-square test was used

to analyse the data. P<0.001 was considered statistically significant.¹²

Results

Of the 212 samples, there were 70(33%) wound swabs, 53(25%) ear swabs, 41(19.3%) urine samples, 33(15.6%) burn swabs and 15(7%) respiratory tract swabs. *Pseudomonas aeruginosa* was identified in 54(25.47%) isolates via culture-based characterisation. *P. aeruginosa* was found in wound infections 23(32.85%), followed by 13(24.52 %) ear infections, 11(26.82 %) urinary tract infections (UTIs), while the lowest incidence was 2(13.3%) in respiratory tract infections (RTIs) (Table 4).

P. aeruginosa was identified in 54(25.47%) isolates. All 54(100%) isolates were positive for mexR, and the PCR

Table-1: Thermal cycling programme for toxA and plcH genes.

No	Steps	Tem (°C)	Time	Cycles
1	Initial Denaturation	94	5min	1
2	Denaturation	94	30sec	35
3	Annealing	58	50sec	35
4	Extension	72	1min	35
5	Final extension	72	10min	1
6	Holding	4	∞	1
	_			

Table-2: Thermal cycling programme for exoT and exoY genes.

No	Steps	Tem (°C)	Time	Cycles
1	Initial Denaturation	94	5min	1
2	Denaturation	94	30sec	35
3	Annealing	58	30sec	35
4	Extension	72	1min	35
5	Final extension	72	5min	1
6	Holding	4	∞	1

Table-5: *Pseudomonas (P.) aeruginosa* distribution according to isolation sources.

Clinical Samples Total χ2 Exo T exo S exo Y exo U toxA Mex R Plc H p-value Wound 23 20 7 19 21 23 23 16 51.24 0 (86.95)(30.4)(82.6)(91.3)(100)(100)(69.56)(HS) Ear 13 11 6 9 11 13 13 7 19.93 0.003 (84.61)(46.1)(69.2)(84.61)(100)(100)(53.84)(HS) Uti 30.38 0 11 9 1 6 8 11 11 7 (81.81)(9.09)(54.5)(72.72)(100)(100)(HS) (63.63)Burn 5 3 0 3 5 5 18.33 0.005 1 (60)(0)(20)(60)(100)(100)(80)(HS) 0.062 **Respiratory tract** 2 0 0 0 12 (0)(0)(50)(100)(100)(50)(NS) (0)Total 54 43 14 36 109.3 0 44 54 54 35 (79.62)(25.9)(81.48)(100)(100)(66.6)(64.81)(HS) χ2 9.99 7.08 11.9 4.95 1.61 (S) (NS) (S) (NS) (NS) (NS) (NS) 0.04 0.018 0.292 0.806 p-value 0.131 1

NS: Non-significant (p>0.05), S: Significant (p<0.05), HS: Highly significant difference (p<0.01).

product was 224bp in size. Also, all 54(100%) isolates were positive for toxA, and the PCR product was 190bp in size.

Further, 44(81.48%) isolates were positive for exoU, and the PCR product was 507bp in size, and 43(79.62%%) exoT, with PCR product size 489bp, 36(66.66) isolates were positive for exoY. Among the isolates, 35(64.81%) were positive for g plcH ene, and the PCR product was 224bp in size, while 14(25.92%) isolates were positive for ExoS, and the PCR product was 289bp in size.

Prevalence of virulence genes in the *P. aeruginosa* isolates significantly different in terms of clinical samples (p<0.05) (Table 5).

Table-3: Thermal cycling programme for mexR and exoS genes.

No	Steps	Tem (°C)	Time	Cycles
1	Initial Denaturation	95	5min	1
2	Denaturation	94	30sec	35
3	Annealing	55	30sec	35
4	Extension	72	7min	35
5	Final extension	72	5min	1
6	Holding	4	∞	1

Table-4: Prevalence of *pseudomonas (P.) aeruginosa* isolates in the clinical samples.

Clinical Samples	Total	Positive samples	Negative samples
Wound	70	23 (32.85)	47 (67.14)
Ear	53	13 (24.52)	40 (75.47)
Uti	41	11 (26.82)	30 (73.17)
Burn	33	5 (15.15)	28 (84.84)
Respiratory tract	15	2 (13.33)	13 (86.66)
Total	212	54 (25.47)	158(74.53)
χ2		5.09 (NS)	
<i>p</i> -value		0.472*	

NS: Non-significant. * Not significant (p>0.05).

Discussion

The study findings are in disagreement with some of the earlier findings¹⁴ and in agreement with others.¹⁵

The deadliest kind of trauma are severe burns that require prompt medical attention from a specialist. The local wound microenvironment and the immunosuppressive state brought on by burn trauma are conducive to bacterial colonisation and growth. The gram-negative bacterium P. aeruginosa has the highest prevalence and typically predominates in established infections among burn wound pathogens. The third most common pathogen associated with catheter-related UTIs in hospitals is *P. aeruginosa*. These factors have been connected to the pathogenesis of *P. aeruginosa* which results in the causes of diseases, such as otitis, burn and wound infections, RTIs and UTIs 19

In the current study, 100 % *P. aeruginosa* isolates were positive for toxA, which is in agreement with a study.²⁰A study done in Baghdad²¹ reported a prevalence rate of 72%. The mexR gene was also detected in 100 % isolates in the current study, which was in line with literature.²² The current findings showed that some clinical specimens had a greater relative frequency of virulence genes. It has been hypothesised that the location of the infection and the duration of the illness can result in the development of some virulence determinants, which in turn affects how virulent *P. aeruginosa* clinical isolates are. For instance, specific anatomical locations can increase in toxin A production and mexR expression.²³ The detection of other genes in the current study was comparable to some earlier studies,¹⁸ but other results have also been reported.²⁴⁻²⁷

Differences in the distribution of virulence genes in the world may be owing to that fact that some strains of P. aeruginosa are characterised by their ability to adapt to different environments during infections, while taking advantage of the conditions of that particular site.²⁸ Furthermore, this may also be because strains isolated from different patients have different clinical and physiological conditions.²⁹

Conclusion

Wound swabs were found to be the most common site for *pseudomonas aeruginosa*, followed by ear swabs and urine samples.

Acknowledgement: we are grateful to the reviewers and the editor for their comments and suggestions.

Disclaimer: None.

Conflict of Interest: None.

Source of Funding: None.

References

- Todar K. Todar's Online Textbook of Bacteriology. [Online] [Cited 2023 August 30]. Available from URL: http://textbookofbacteriology.net/ Listeria.html
- Cruickshank R, Duguid JP, Marmion BP, Swain RHA. Clinical Microbiology. London, England: Mosby-Year Book Europe Limited, 2000; pp 40-190.
- Jawetz E, Melinick JL, Adelberg EA. Medical Microbiology, 21st ed. London, United Kingdom: Appleton and Lange, Prentice-Hall International, London, United Kingdom, 2018; pp1115-9.
- Damron, F. H. and Goldberg, J. B. Proteolytic regulation of alginate overproduction in Pseudomonas aeruginosa. Mol Microbiol 2020; 54: 201-35.
- Gale T. Pseudomonas infection. Baghdad, Iraq: Book Rage Inc, 2012; pp 380-90.
- Todar K. Bacteriology 330 Lecture Topics: Pseudomonas aeruginosa, 9TH ed. Madison County, USA: Annual Reports of Wisconsin University, 2004 24: pp 201-35.
- Woods DE, Bass JA, Johanson WG Jr, Straus DC. Role of adherence in the pathogenesis of Pseudomonas aeruginosa lung infection in cystic fibrosis patients. Infect Immun 1980;30:694-9. doi: 10.1128/iai.30.3.694-699.1980.
- Inacio HS, Bomfim MR, França RO, Farias LM, Carvalho MA, Serufo JC, et al. Phenotypic and genotypic diversity of multidrug-resistant Pseudomonas aeruginosa Isolates from bloodstream infections recovered in the Hospitals of Belo Horizonte, Brazil. Chemotherapy. 2014;60:54-62. doi: 10.1159/000365726.
- Verma U, Kulshreshtha S, Khatri P. MDR Pseudomonas aeruginosa in Nosocomial Infection: Burden in ICU and Burn Units of a Tertiary Care Hospital. Int J Curr Microbiol App Sci 2018;7:1267-74. doi: 10.20546/ijcmas.2018.701.154
- Alnour T, Ahmed-Abakur EH. Multidrug Resistant Pseudomonas aeruginosa: Medical Impact, Pathogenicity, Resistance Mechanisms and Epidemiology. JSM Microbiology 2020; 68: 1486-96.
- Hancock RE, Speert DP. Antibiotic Resistance in Pseudomonas aeruginosa: Mechanisms and Impact on Treatment. Drug Resistance Updates 2000;3:247-55. doi: 10.1054/drup.2000.0152
- Nuttall T, Cole LK. Evidence-based veterinary dermatology: a systematic review of interventions for treatment of Pseudomonas otitis in dogs. Vet Dermatol 2007;18:69-77. doi: 10.1111/j.1365-3164.2007.00575.x.
- Grewal US, Bakshi R, Walia G, Shah PR. Antibiotic susceptibility profiles of non-fermenting gram-negative Bacilli at a Tertiary Care Hospital in Patiala, India. Niger Postgrad Med J 2017 Apr;24:121-5. doi: 10.4103/npmj.npmj_76_17
- Charan J, Biswas T. How to calculate sample size for different study designs in medical research? Indian J Psychol Med 2013;35:121-6. doi: 10.4103/0253-7176.116232.
- Ahmed RA. Molecular study and evaluation of DNA modification by DNA of Pseudomonas aeruginosa isolates isolated from sources. Baghdad, Iraq: College of Science, University of Baghdad; 2007.
- Wu L, Estrada O, Zaborina O, Bains M, Shen L, Kohler JE, et al. Recognition of host immune activation by Pseudomonas aeruginosa. Science. 2005;309:774-7. doi: 10.1126/science.1112422.
- Al-Saeedi JM. Isolation and identification of pseudomonas aeruginosa from different clinical infections. Microbes Infect 2018;5:3561-3569.
- Fournier A, Eggimann P, Pantet O, Krähenbühl M, Bonnemain CL, Fournier C, et al. Antibiotics' consumption to early detect epidemics of P. aeruginosa in a burn center: a paradigm shift in the epidemiological surveillance of nosocomial infections. Antimicrob Resist Infect Control 2015;4(Suppl 1):P232. doi: 10.1186/2047-2994-4-S1-P232.

- 19. Jarvis WR, Martone WJ. Predominant pathogens in hospital infections. J Antimicrob Chemother 1992;29(Suppl A):s19-24. doi: 10.1093/jac/29.suppl_a.19.
- 20. Lyczak JB, Cannon CL, Pier GB. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2000;2:1051-60. doi: 10.1016/s1286-4579(00)01259-4.
- Magalhães MJ, Pontes G, Serra PT, Balieiro A, Castro D, Pieri FA, et al. Multidrug resistant Pseudomonas aeruginosa survey in a stream receiving effluents from ineffective wastewater hospital plants. BMC Microbiol 2016;16:193. doi: 10.1186/s12866-016-0798-0.
- 22. Al-Shwaikh RMA, Alornaaouti AF. Detection of tox A gene in Pseudomonas aeruginosa that isolates from different clinical cases by using PCR. Ibn al-Haitham J Pure Appl Sci 2020;1:26-30. DOI: 10.30526/2017.IHSCICONF.1767
- 23. Hwang IY, Koh E, Wong A, March JC, Bentley WE, Lee YS, et al. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat Commun 2017;8:15028. doi: 10.1038/ncomms15028.
- 24. Agnello M, Wong-Beringer A. Differentiation in quinolone resistance by virulence genotype in Pseudomonas aeruginosa. PLoS One 2012;7:e42973. doi: 10.1371/journal.pone.0042973.

- Georgescu M, Gheorghe I, Curutiu C, Lazar V, Bleotu C, Chifiriuc MC. Virulence and resistance features of Pseudomonas aeruginosa strains isolated from chronic leg ulcers. BMC Infect Dis 2016;16(Suppl 1):s92. doi: 10.1186/s12879-016-1396-3
- Amirmozafari N, Fallah Mehrabadi J, Habibi A. Association of the Exotoxin A and Exoenzyme S with Antimicrobial Resistance in Pseudomonas Aeruginosa Strains. Arch Iran Med 2016;19:353-8.
- Jackson AA, Gross MJ, Daniels EF, Hampton TH, Hammond JH, Vallet-Gely I, et al. Anr and its activation by PIcH activity in Pseudomonas aeruginosa host colonization and virulence. J Bacteriol 2013;195:3093-104. doi: 10.1128/JB.02169-12.
- Benie CK, Dadié A, Guessennd N, N'gbesso-Kouadio NA, Kouame ND, N'golo DC, et al. Characterization of Virulence Potential of Pseudomonas Aeruginosa Isolated from Bovine Meat, Fresh Fish, and Smoked Fish. Eur J Microbiol Immunol (Bp) 2017;7:e55-64. doi: 10.1556/1886.2016.00039.
- Lanotte P, Watt S, Mereghetti L, Dartiguelongue N, Rastegar-Lari A, Goudeau A, et al. Genetic features of Pseudomonas aeruginosa isolates from cystic fibrosis patients compared with those of isolates from other origins. J Med Microbiol 2004;53:73-81. doi: 10.1099/jmm. 0.05324-0.