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Introduction
Trichoderma, a genus of filamentous fungi, is common in
many soils and rhizosphere. Since the 1930s, it has been
a prominent topic of basic and applied mycology study.
Using antagonism, parasitism, and/or antibiosis, several
members of this genus are able to combat nematodes
and plant pathogenic fungi.1 Trichoderma is one of the
most extensively studied filamentous fungal genera, with
diverse applications in agriculture, industry, and the
environment.2 It is a prolific producer of a variety of
secondary metabolites, such as non-ribosomal peptides
(NRPs), peptibols, polyketides, pyrones, siderophores,
and volatile and non-volatile terpenes can all be used in
the food, pharmacological, agricultural, and
biotechnology industries.3-5 These are natural products
that exhibit biological activity, and have an enormous

social impact. Others are interested in the
pharmaceutical field, especially antibiotics, some of
which have adverse effects, and disease encounters with
plants or animals.6 Trichoderma secondary metabolites
acting as self-regulators that have been identified and
characterised include 1,3,8-Trihydroxy-6-Methyl-
anthraquinone (emodin), pachybasin, 1-Octen-3-Ol
(octenol), and 3-Octanone.7,8 Emodin is a natural
anthraquinones found in barks and roots of numerous
plants, mold and lichen.9 Emodin, together with
physcion, aloe-emodin, chrysophanol and rehin, is the
building block for a variety of purgative anthraquinone
derivatives and has been widely utilised as a laxative
substance since ancient times.10 Pharmacological studies
have shown that emodin has a variety of biological
functions, such as anti-inflammatory,9 anti-bacterial11 and
anti-cancer.12-14 In vitro and in vivo investigations have
shown that emodin protects the liver from harm caused
by lipopolysaccharide (LPS), carbon tetrachloride (CCl4),
alcohol, and high-fat diets. Although emodin has a
positive effect on liver diseases, there is no
comprehensive assessment of emodin’s role in this
regard.15 The current study was planned to investigate
the efficacy of emodin as an antibacterial agent in
relation to a selection of clinical infections.
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Materials and Methods
The cross-sectional study, conducted at Al-Zahraa
Teaching Hospital, Wassit, Iraq, from December 2021 to
March 2022 was approved by the Research Ethics
Committee of Wasit Directorate General of Health and
the Ethics Review Board of AL-Zahra Teaching Hospital
on 27. November, 2021. The patient’s consent was
obtained for providing the samples for analysis. 

The study was conducted on tichoderma
longibrachiatum samples taken from the Wasit
University’s garden soil which were subjected to plate
morphology, microscopic examination, and polymerase
chain reaction-internal transcribed spacer (PCR-ITS)
testing. 

Czapek’s media with some modifications assessed the
production of inhibitory substances of crude extracts.
Trichoderma isolates were cultivated for 7 days on potato
dextrose agar (PDA), and four blocks of trichoderma agar
culture 10mm in diameter were added to the Czapek’s
modified media (500ml) in flasks. They were incubated in
the dark and kept unshaken for 14 days at mean
temperature of 27±2°C. The organic solvent was added
to remove anti-fungal compounds from Czapek’s
modified media. Ethyl acetate (Et OAc) 500ml was placed
in a shaker set at 121 revolutions per minute (rpm)
overnight. The extraction took a fixed time of 24 hours to
finish. A revolving evaporator (Gallen Hamp, England) at
37°C was used to extract antifungal extracts and the Et
OAc boiling point of 77.1°C was taken as the reference
point.16

Emodin extracts of trichoderma isolate in vitro
antimicrobial activity were studied against pathogenic
bacteria proteus (P.) mirabilis, staphylococcus (S.)
epidermidis, staphylococcus (S.) aureus, streptococcus (S.)
pyogenes, escherichia (E.) coli, pseudomonas (P.)
aeruginosa and klebsiella (K.) species. Using the agar well
diffusion method, emodin extract doses of 0.5μg/ml,
1μg/ml, 2μg/ml and 4μg/ml were tested against clinical
pathogenic bacteria.

Data was analysed using SPSS 22. Descriptive and
inferential statistics were employed. P<0.05 was
considered significant.

Results
Emodin 0.5μg/ml showed high antibacterial activity
against P. mirabilis, with emodin inhibition zone (EIZ) of
8.7mm, followed by S. epidermidis 7mm, S. pyogenes
7.6mm, S. aureus 7.5mm, E. coli 6.7mm and klebsiella
species 0.4mm. P. aeruginosa was resistant to emodin
0.5μg/ml. 

EIZ was found to significantly different at differ emodin
concentrations (p=0.000001). EIZ at 0.5μg/ml
concentration was non-significantly lower than EIZ at
1μg/ml (p>0.05), but EIZ at 0.5μg/ml was significantly
lower than at (2 μg/ml, 4μg/ml (p<0.05) (Table). E. coli
showed lower EIZ at 0.5μg/ml, and higher EIZ was
recorded at 4μg/ml (Figure 1A). Findings indicated a
bivariate nonlinear, quadratic and significantly strong
positive correlation between concentration level and
inhibition zone for E. coli (r=0.995, p=0.000001). 

For klebsiella species, the inhibition zone was lower with
emodin concentration 0.5μg/ml, and higher with the
concentration of the disc (Figure 1B). There was a
bivariate nonlinear, cubic and significantly strong
positive correlation between concentration level and
inhibition zone for klebsiella species (r=0.965,
p=0.000001).

Lower inhibition zone was seen in P. aeruginosa with
emodin concentration of 1μg/ml, and higher with
4μg/ml. At 0.5μg/ml concentration and, disc there were
zero inhibition zones (Figure 1C). There was a bivariate,
nonlinear, cubic and significantly strong positive
correlation between concentration level and inhibition
zone for P. aeruginosa (r=0.984, p=0.000001).

The inhibition zone for S. aureus was seen to be lower
with emodin concentration 0.5μg/ml, and higher with
the disc (Figure 1D). There was a bivariate, linear and
significantly strong positive correlation between
concentration level and inhibition zone for S. aureus
(r=0.976, p=0.000001).

For S. epidermidis, the inhibition zone was lower mean
with emodin concentration 0.5μg/ml, and higher with
4μg/ml (Figure 1E). There was a bivariate, nonlinear, cubic
and significantly strong positive correlation between
concentration level and inhibition zone for S. epidermidis
(r=0.974, p=0.000001).

For P. mirabilis, the inhibition zone was lower with
emodin concentration 0.5μg/ml, and higher with 4μg/ml
(Figure 1F). There was a bivariate, nonlinear, cubic and
significantly strong positive correlation between
concentration level and inhibition zone for P. mirabilis
(r=0.990, p=0.000001) (Figure 2). 

For S. pyogenes, the inhibition zone was lower with
emodin concentration 0.5μg/ml, and higher with
concentration of 4μg/ml, and there was a bivariate,
nonlinear, cubic and a significantly strong positive
correlation between concentration level and inhibition
zone (r=0.988, p=0.000001) (Figure 2A-G). 
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emodin Inhibition Zone Concentration (mg/ml)
Bacteria isolate n (Mean ± SD) (M.R) disc (30mg/ml) Kruskal-Wallis Test Post-hoc* p-value

0.5 1 2 4

Escherichia coli 10 6.9 ± 0.57 11.3 ± 0.48 17.6 ± 0.52 23.5 ± 0.71 22.6 ± 0.97 K= 46.14 0.5 vs. 1 0.999
(5.5) (15.5) (25.5) (43.0) (38.0) Sig. 0.000001 0.5 vs. 2 0.02

0.5 vs. 4 0.0001
0.5 vs. disc 0.0001

1 vs. 2 0.999
1 vs. 4 0.0001

1 vs. disc 0.005
2 vs. 4 0.066

2 vs. disc 0.540
4 vs. disc 0.999

Pseudomonas 10 0.00±0.00 11.2±0.42 19.5±0.85 23.3±0.82 0.00±0.00 K= 26.80 1 vs. 2 0.096
taeruginosa (0.0) (5.5) (15.5) (25.5) (0.0) Sig. 0.000002 1 vs. 4 0.0001

2 vs. 4 0.096
Staphylococcus 10 7.5±8.5 C11.2±0.42 12.5±0.53 21.0±0.94 21.8±0.42 (43.9) K= 45.96 Sig. 0.5 vs. 1 0.999
aureus (5.5) (16.0) (25.0) (38.1) 0.000001 0.5 vs. 2 0.025

0.5 vs. 4 0.0001
0.5 vs. disc 0.0001

1 vs. 2 0.999
1 vs. 4 0.006

1 vs. disc .0001
2 vs. 4 0.418

2 vs. disc 0.054
4 vs. disc 0.999

Staphylococcus 10 7.7±0.48 10.3±0.48 13.0±0.94 22.9±0.99 12.6±0.52 K= 45.56 0.5 vs. 1 0.999
epidermis (5.5) (15.5) (31.7) (45.5) (29.3) Sig. 0.000001 0.5 vs. 2 0.001

0.5 vs. 4 0.0001
0.5 vs. disc 0.002

1 vs. 2 0.123
1 vs. 4 0.0001

1 vs. disc 0.329
2 vs. 4 0.329

2 vs. disc 0.999
4 vs. disc 0.123

Proteus mirabilis 10 8.7±0.48 10.6±0.52 12.8±0.63 21.9±0.88 21.6±0.52 K= 45.88 0.5 vs. 1 0.999
(5.5) (15.5) (25.5) (41.9) (39.1) Sig. 0.000001 0.5 vs. 2 0.019

0.5 vs. 4 0.0001
0.5 vs. disc 0.0001

1 vs. 2 0.999
1 vs. 4 0.0001

1 vs. disc 0.003
2 vs. 4 0.110

2 vs. disc 0.349
4 vs. disc 0.999

Streptococcus 10 7.6±0.52 12.4±0.52 16.5±0.53 24,7±1.2 23.3±0.95 K= 46.28 0.5 vs. 1 0.999
(5.5) (15.5) (25.5) (43.35) (37.65) Sig. 0.000001 0.5 vs. 2 0.020

0.5 vs. 4 0.0001
0.5 vs. disc 0.0001

1 vs. 2 0.999
1 vs. 4 0.0001

1 vs. disc 0.006
2 vs. 4 0.057

Table: Mean values of the inhibition zone in different emodin concentrations. 

Continued on next page



Discussion
The activity of emodin varied according to microbial
species and strains. Studies have revealed that minimal
emodin concentrations of 50μg/mL had bactericidal action,
and bacteriostatic action against bacillus subtilis, and 
S. aureus at emodin concentrations of 7.8μg/mL and
3.9μg/mL, respectively.17,18 The current findings disagreed
with a study showing emodin was not active against
klebsiella (K.) pneumoniae and E. coli.19 and that the
minimum inhibition concentration of emodin against these
two bacterial species was 32μg/mL and 16μg/mL,

respectively. A study determined the
minimum inhibition concentration of
emodin for bacillus cereus, bacillus subtilis
and bacillus pumilus (0.5, 1.5, 2.0μg/mL),
and found it to be higher for P. aeruginosa
and S. aureus (70.0, 90.0μg/mL). Listeria (L.)
ivanovii and S. pneumoniae were less
sensitive, and trichoderma species
produced antibiotics and other compounds
damaging to pathogens and limiting
development in plants (antibiosis).20

The considered mechanisms for biocontrol
are antibiosis, lysis, competition and
mycoparasitism. These may act alone or in
combination. Trichoderma species are also
current against various gram-negative and
gram-positive bacterial species. They
produce around 40 different metabolites of
trichoderma, as well as norfloxacin and
ciprofloxacin in cultures of trichoderma that
are antibacterial in nature.21 Anthraquinones’
antibacterial actions are numerous, ranging
from basic cell wall instability to changes in
metabolic pathways or deoxyribonucleic

acid (DNA) inclusions either directly or indirectly (caused
by free radicals). The chemical properties of anthraquinone
are linked to the efficiency of these mechanisms, including
steric effect, potential of hydrogen (pH) and polarity of
group substituents. To add to the difficulty of developing
bacterial resistance, a single anthraquinone derivative may
have many mechanisms of action.22 A study demonstrated
that emodin can attach to and insert into the bacterial cell
membrane, resulting in cytoplasmic membrane integrity
loss.23 According to the study, emodin may block electron
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emodin Inhibition Zone Concentration (mg/ml)
Bacteria isolate n (Mean ± SD) (M.R) disc (30mg/ml) Kruskal-Wallis Test Post-hoc* p-value

0.5 1 2 4

2 vs. disc 0.601
4 vs. disc 0.999

Klebsiella 10 0.4±0.8 12.5±0.53 15.7±0.95 18.2±1.03 19.4±0.52 K= 45.94 0.5 vs. 1 0.999
(5.5) (15.5) (25.95) (36.75) (43.8) Sig. 0.000001 0.5 vs. 2 0.016

0.5 vs. 4 0.0001
0.5 vs. disc 0.0001

1 vs. 2 0.999
1 vs. 4 0.010

1 vs. disc 0.0001
2 vs. 4 0.951

2 vs. disc 0.058
4 vs. disc 0.999

Table-1: continued from previous page

SD: Standard deviation.

Figure 1: Antibacterial activity of emodin extract of Trichoderma longibrachiatum against (A) Escherichia (E.) coli, 
(B) Klebsiella (K.), (C) Pseudomonas (P.) aeruginosa, (D) Staphylococcus (S.) aureus, (E) Staphylococcus (S.)
epidermis and (F) proteus (P.) mirabilis on Mueller-Hinton agar, after 24 hours at 37ºC using agar well
diffusion method (diameter of the well 5mm).



transport in the respiratory chain, substrate oxidation and
dehydrogenation processes in bacteria. There was also
speculation that causing DNA damage and inhibiting
internal processes in bacteria would be the way to kill them
rather than membrane permeabilisation.23 A study showed
that trichoderma isolates’ crude extract had high
antibacterial activity, and S. aureus exhibited higher
sensitivity than other pathogenic bacteria. The growth
zone inhibition increased when concentrations increased,
but E. coli, acinetobacter (A.) baumannii and salmonella (S.)
typhi showed resistance to all concentration of the
trichoderma isolates.24 A study showed the aspergillus (A.)
chevalieri and trichoderma (T.) harzianum metabolites has
good antimicrobial activity against E. coli, P. aeruginosa, and

methicillin-resistant S aureus
(MRSA).25

Bioactive chemicals harm bacterial
cells through a variety of processes.
By forming complexes with soluble
bacterial cell proteins, including
essential enzymes, emodin can
block them or act as a DNA-
intercalating agent. It can also
coagulate soluble bacterial cell
proteins, including important
enzymes. Others are in charge of
membrane disruption as well as
the inhibition of cell wall and
nucleic acid synthesis. Lysozyme
damages bacterial cell walls and
the cell membrane, causing
membrane breakdown and the
release of intracellular contents, as
well as bacterial cell death.26

Despite the fact that emodin had
no effect on genes involved in cell
wall construction and lysis, as well
as lactamase activity and drug
accumulation, it reduced
membrane fluidity and degraded
membrane integrity, resulting in
monoatomic monocation from
sodium (Na+) and potassium ion
(K+) leakage from the bacteria.27

Emodin’s capacity to connect with
the phosphate group of DNA and
intercalate into the base pairs of
the DNA helix is the basis of its
antibacterial effects. Replication
and transcription are affected,
expression is repressed, and the

cells will potentially die (inhibition of nucleic acids
synthesis).27 Emodin has high antibacterial action against
gram-positive bacterial strains, including those that are
medication-resistant. Halo emodin expedites the rate at
which potassium ions can pass across the plasma
membrane of bacteria. More crucially, halo emodin binds
to proteins more strongly and stably than emodin. These
findings help to explain why halo emodin has stronger
antibacterial properties than its parent nucleus, emodin.11

Conclusion
Emodin extract of trichoderma longibrachiatum showed
high antimicrobial activity against all the human
pathogenic bacteria studied. Emodin from trichoderma
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Figure 2: Scatterplot showing the relationship between concentration and inhibition zone (n=70) of a) Escherichia (E.) coli, 
b) Pseudomonas (P.) aeruginosa, c) Staphylococcus (S.) aureus, d) Staphylococcus (S.) epidermis, e) Proteus (P.) mirabilis, 
f) Streptococcus (S.) pyogenes, and g) Klebsiella species.



longibrachiatum can be used as an effective treatment to
eliminate human pathogenic bacteria rather than the use
of chemical antibiotics.
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