

Almond oil improves the levels of some trace elements and antioxidant status in mice exposed to oxidative stress

Amer Alasadi¹, Husam Al-Hraishawi², Haider Humaish³

Abstract

Objectives: To evaluate the concentrations of some trace elements and the antioxidant status in male mice exposed to oxidative stress by carbon tetrachloride and then treated by either almond oil or vitamin C.

Methods: The animal study was conducted in January 2020 at the College of Nursing of the University of Thi-Qar and the Kut Technical Institute, Middle Technical University, Baghdad, Iraq, and comprised adult male mice. They were divided randomly into four equal groups and treated for 21 days. Mice in group I received sunflower oil 1ml per mice, mice in group II were injected 0.3% carbon tetrachloride intraperitonially, mice in group III received 0.3% carbon tetrachloride plus oral intubation of vitamin C 300mg/kg body weight daily, and mice in group IV were intubated with 2.26g/kg body weight of almond oil plus 0.3% carbon tetrachloride daily. Serum and liver homogenate were used to measure the levels of trace elements and the antioxidant status. Data was analysed using SPSS version 20.

Results: There were 24 mice; 6(25%) in each on the 4 groups. Mice in group II showed a significant decrease in zinc, magnesium and phosphorus levels, and significant elevation in calcium levels (p<0.05). Mice in groups III and IV showed a significant difference in trace elements compared to group II (p<0.05). Almond oil enhanced the antioxidant status and was more active than vitamin C (p<0.05).

Conclusions: Almond oil was found to have beneficial and pharmacological effects against oxidative stress. **Keywords:** Carbon tetrachloride, Antioxidants, Prunus dulcis, Ascorbic acid, Phosphorus, Fatty liver, Zinc, Vitamins, Intubation, Intratracheal. **DOI:** https://doi.org/10.47391/JPMA.IQ-29

Introduction

Recent studies have emphasised the important and healthy uses of flavonoids, which are active-phenolic combinations extensively found in vegetables, fruits, plant extracts, green tea, lycopene, broccoli, red bell peppers, berries, as well as almond oil (AO).¹⁻⁵ These compounds have generated a wide ranges of research areas because of their potentially therapeutic anti-inflammatory, antifungal, cardio-protective and antiviral actions.⁶⁻⁸ In addition, some of these properties are linked to their antioxidant properties that could scavenge the toxicity of free radicals (FRs).^{9,10}

Flavonoids produce a synergistic effect with other antioxidants, such as vitamins E and C, to reduce FR toxicity¹¹. FRs are constantly produced in small quantities by routine metabolism processes, and several of them have beneficial biological roles.^{12,13} But when they are produced in huge amounts, they enhance the damaging effect to different biological molecules.¹⁴ FR levels are increased in the body through the oxidative stress process. They are the result of an inequality of

antioxidants and pro-oxidants inside the living cells, which is being considered a vital cause in different chronic diseases, such as cancer, cataract, post-ischaemic reoxygenation injury, rheumatoid arthritis complications associated with aging, and cardiovascular disease.¹⁵⁻¹⁸

The trace elements have been exhibited to impact several biological, biosynthetic and biochemical processes, such as the stabilisation of the structures of both nucleic acid and proteins. ¹⁹⁻²¹ Furthermore, trace elements are important in subcellular system functions, like membrane transport, mitochondria, nerve conducting, and muscular contraction. ²²⁻²⁴ Moreover, copper (Cu), zinc (Zn), Zn, manganese (Mn) and selenium (Se) act as antioxidants. ²⁵

The current study was planned to examine the effective role of AO in modifying the serum levels of some trace elements and antioxidant status in male mice exposed to oxidative stress by carbon tetrachloride (CCI4) and then treated with AO and vitamin C.

Materials and Methods

The animal study was conducted in January 2020 at the College of Nursing of the University of Thi-Qar and the Kut Technical Institute, Middle Technical University, Baghdad, Iraq. After approval from the institutional ethics review board adult male Albino mice weighing 20-25g each were obtained from the animal house. They were divided randomly into 4 equal groups and treated for 21 days.

¹Department of Medical Basic Science, University of Thi-Qar, Baghdad, Iraq.

²Department of Physiology, Misan University, Amarah, Iraq

³Department of Pathological Analysis, Middle Technical University, Baghdad, Iraq. **Corrospondience:** Amer Alasadi email: dr.amer@utq.edu.iq

Mice in control group I (GI) received sunflower oil 1ml per mice, mice in group Π (GII) were injected 0.3% CCl4 intraperitonially, mice in group \coprod (GIII) received 0.3% CCl4 plus oral intubation of vitamin C 300mg/kg body weight daily, and mice in group IV (GIV) were intubated with 2.26g/kg body weight of AO plus 0.3% CCl4 daily. CCl4 and other chemicals (Sigma, St Louis, MO, USA) were used to generate a stock solution on a daily basis, AO, sunflower oil, and vitamin C were obtained from a local licensed pharmacy.

Fasting blood samples were collected at 0, 10 and 21 days of the experiment, and were used for the measurement of Zn, magnesium (Mg), Phosphorus (P) and Calcium (Ca) levels using the atomic absorption method.²⁷ Catalase, superoxide dismutase (SOD) and glutathione (GSH) antioxidant levels were measured using the cold supernatants of liver homogenates (Randox Kit, United Kingdom) as per the procedure suggested by the manufacturers.²⁸⁻²⁹ The level of malonaldehyde (MAD) was measured using the thiobarbituric acid reactive substance (TBRAS) kit (Cayman, USA) as per the procedure suggested by the manufacturers.³⁰

Data was analysed using the software SPSS version 20. Two-way analysis of variance (ANOVA) was used, with p<0.05 being the marker of statistical significance.

Results

There were 24 mice; 6(25%) in each on the 4 groups. The groups showed no significant differences at baseline (p>0.05). There was a significant decrease in Zn level (p<0.05) in G Π compared to GI, G \coprod and GIV, along with a significant elevation in GV at 10 and 21 days (Table 1).

There was a significant decline in Zn level in GIII compared to GI at 21 days (p<0.05).

There was a significant decrease (p<0.05) in mean Mg level in GII on days 10 and 21 compared to GI, GIII and GIV (Table 2). There was a significant increase (p<0.05) in Ca level in GII mice at 10 and 21 days compared to GI, GIII and GIV (Table 3).

There was a significant decline (p<0.05) in P level in GII and GIII at 10 and 21 days compared to GI (Table 4). There was a significant increase on day 21 in GIV mice compared to GII and GIII (p<0.05).

There was a significant increase (p<0.001) in MAD level in GII and a significant decline in GIII and GIV compared to GI (Table 5). There was a significant increase in GSH, catalase and SOD levels in GIII and GIV compared to GII (p<0.05).

Table-1: Effect of almond oil (AO) and vitamin C on zinc (ppm) level in serum of mice treated with carbon tetrachloride (CCl4).

Group/Time (Day)	0	10 (Days)	21 (Days)	<i>p</i> -value
I	2.20±0.05	2.16±0.05	2.15±0.05	NS
	Aa	Aa	Aa	
II	2.28 ± 0.10	1.61±0.07	1.50±0.05	< 0.05
	Aa	Bb	Вс	
III	2.33 ± 0.08	2.01 ± 0.04	1.96 ± 0.10	< 0.001
	Aa	Aa	Cb	
IV	2.15±0.05	2.35±0.07	2.33 ± 0.07	NS
	Aa	Aa	Aa	

Values presented as means \pm standard deviation (SD); n = 6 mice/group; capital letters denote the differences between groups; p < 0.05 and 0.001 vs. control; small letters indicate the differences within group compared to baseline; p < 0.05 and 0.001.

Table-2: Effect of almond oil (AO) and vitamin C on magnesium (Mg) level (PPM) in serum of mice treated with carbon tetrachloride (CCI4).

Group/Time (Day)	0	10 (Days)	21 (Days)	<i>p</i> -value
1	12.19±0.22	12.05±0.08	12.05±0.24	NS
	Aa	Aa	Aa	
II	12.11±0.10	10.18±0.23	9.83 ± 0.37	< 0.001
	Aa	Bb	Вс	
III	12.26±0.32	13.51±0.19	13.33±0.30	< 0.001
	Aa	Cb	Cb	
IV	12.05±0.09	12.56±0.30	12.90±0.33	NS
	Aa	Aa	Aa	

Values presented as means \pm standard deviation (SD); n=6 mice/group; capital letters denote the differences between groups, p<0.05 and 0.001 vs. control; small letters indicate the differences within group compared to baseline; p<0.05 and 0.001.

Table-3: Effect of almond oil (AO) and vitamin C on calcium (Ca) level (ppm) in serum of mice treated with carbon tetrachloride (CCl4).

Group/Time (Day)	0	10 (Days)	21 (Days)	<i>p</i> -value
I	125.68±0.39	125.93±0.48	125.95±0.17	NS
	Aa	Aa	Aa	
	125.70±0.18	121.23±0.53	119.50±0.46	< 0.001
	Aa	Bb	Вс	
	Aa	Bb	Aa	
IV	125.75±0.12	126.43±1.45	126.28±0.25	NS
	Aa	Aa	Aa	

Values presented as means \pm standard deviation (SD); n = 6 mice/group; capital letters denote the differences between groups, p < 0.05 and 0.001 vs. control; small letters indicate the differences within group compared to baseline, p < 0.05 and 0.001.

Table-4: Effect of almond oil (AO) and vitamin C on phosphorus (P) level (ppm) in serum of mice treated with carbon tetrachloride (CCl4).

Group/Time (Day)	0	10 (Days)	21 (Days)	<i>p</i> -value
I	125.68±0.39	125.93±0.48	125.95±0.17	
	Aa	Aa	Aa	NS
II	125.70±0.18	121.23±0.53	119.50±0.46	
	Aa	Bb	Вс	< 0.001
III	125.93±0.41	122.93±0.80	125.10±0.30	
	Aa	Bb	Ac	< 0.001
IV	125.75±0.12	126.43±1.45	126.28±0.25	
	Aa	Aa	Aa	NS

Values presented as means \pm standard deviation (SD); n=6 mice/group; capital letters denote the differences between groups, p<0.05 and 0.001 vs. control; small letters indicate the differences within group compared to baseline, p<0.05 and 0.001.

Table-5: Effect of almond oil (AO) and vitamin C on antioxidant status of mice treated with carbon tetrachloride (CCI4).

Group/Time (Day)	MAD (mM/L)	GSH (μmol/g)	Catalase (Unit/mg)	SOD
	8.68±0.67	4.81±0.58	19±1.48	21.9±3.15
	Α	Α	Α	Α
II	19.70±1.14	2.11±0.44	6.5 ± 0.78	11.9. ±1.21
	В	В	В	В
III	12.93±0.65	4.73±0.60	22.0 ± 3.78	19.10±3.11
	C	Α	C	Α
IV	10.55±0.56	4.93±0.50	22.5 ± 3.82	20.28±3.33
	D	Α	C	Α
P value	< 0.001	< 0.05	< 0.001	< 0.05

MAD: Malonaldehyde, GSH: Glutathione, SOD: Superoxide dismutase. Values presented as means \pm standard deviation (SD); n=6 mice/group; capital letters denote the differences between groups vs. control, p<0.05 and 0.001.

Discussion

The current study showed that the injection of CCl4 caused significant decrease in some trace elements, such as Zn, Mg and P, with significant elevation in Ca, compared to the control group.

These results showed oxidative stress induction by CCl4 which could have been because of a variety of reasons.³¹

The possible oxidation of GSH and nicotinamide adenine dinucleotide phosphate (NADPH) by Reactive Oxygen Species (ROS) via GSH redox cycle causes depletion of endogenous antioxidants, including GSH, leading to decrease in antioxidant / pro-oxidant ratio.³² Any trouble in nutritional equilibrium of trace elements thus decreases efficacy of antioxidant status and rises sensitivity of organism to the damage caused via FRs. High loss of trace elements could be contributing to the decreased defence mechanism.³³

The significant decreased in Zn and P could have been due to the antioxidant properties of these elements in the body, while Zn and iron elements have an important role as cofactors of some enzymes. Also, Zn is a co-factor of cytoplasmic Cu-Zn SOD enzymes that decrease the levels of these elements due to the detoxification of harmful oxygen species. In addition, Zn and Cu contribute to antioxidant defences.³⁴ One study reported that Zn and Se are antagonised to oxidative stress.³⁵ Other studies showed that Zn causes an inhibition of lipid peroxidation.³⁶

Zn stabilizes the structure of SOD activity, and increases the concentration of superoxide radicals, which could increase the formation of superoxide radicals in proximity to mitochondria.³⁷

The increase in Ca level could enhance the activation of various Ca-dependent degenerative enzymes, like

phospholipase, proteases and endonuclease, which may contribute to cell death.³⁸ In contrast, low dose of oxidative stress in Vitamin C and AO group stimulates the enzyme activity of protein kinase that is marked by increase oxidation-reduction.³⁹

The decrease of Mg ions due to the antioxidant properties and any deficiency in Mg level are linked to increased oxidative stress. 40-42 Additionally, rich diet with Mg may exert a cardiac protection effect by reducing ration involving total plasma cholesterol, triglyceride and ameliorated high-density lipoprotein (HDL). 43 The current study noted a significant decline in P level in GΠ and GШ at 10 and 21 days compared to the control group. This was because of damage to the kidney by CCl4 that led to decrease in vitamin D synthesis, causing difficulty in absorption from the kidney. 44

In addition, the current results showed the protective effect of AO and vitamin C. Vitamin C is the most powerful antioxidant, which is critical for appropriate antioxidant safety as it decreases lipid peroxidation in the cell membrane. The high content of different phytochemical compounds, such as flavonoids (catechins) in AO decreases lipid peroxidation level and protects cell membrane fluidity, keeping the internal environment of trace element constant.

It has been reported that AO contains manifold higher concentration of potassium, iron, vitamin C and organic acid as well as biologically active plant phenolic compounds.⁴⁷ Also, AO is a very good source for phosphorus, vitamin B1 (thiamine), vitamin B2 (riboflavin) and vitamin B3 (niacin) and is high in isoflavone.⁴⁸ Anthocyanins have been demonstrated in laboratory experiments to have the potential to inhibit oxidative stress suspected to be at the origin of heart disease, cancer and another chronic diseases.⁴⁹

Conclusions

A protective effect of AO against toxicity of CCI4 was found in mice. Besides, AO can be used as preventive treatment for patients suffering from chronic diseases.

Disclaimer: None.

Conflict of Interest: None. **Source of Funding:** None.

References

 Bagali RS, Jalalpure SS, Patil SS. Evaluation of Schrebera swietenioides Roxb. fruit Ethanolic extract for Antioxidant and Hepatoprotective activity against CCl4 induced liver injury in rats. Research J Pharm and Tech 2020;13:5115-20. DOI: 10.5958/0974-360X.2020.00895.1.

- Musa-Veloso K, Paulionis L, Poon T, Lee HY. The effects of almond consumption on fasting blood lipid levels: a systematic review and meta-analysis of randomised controlled trials. J Nutr Sci 2016;5:e34. doi: 10.1017/jns.2016.19.
- Arslan J, Ahmed T, Gilani AH. Soaked almonds exhibit vitamin edependent memory protective effect in rodent models. Int J Pharmacol 2017;13:448-56.
- Humaish HH, Alasadi A, Muslem ZZ. The protective efficacy of parsley seed extracts on some physiological and biochemical criteria against cadmium induced toxicity. Int J Pharm Res 2020;2:3978-85.
- Chen CM, Liu JF, Li SC, Huang CL, Hsirh AT, Weng SF, et al. Almonds ameliorate glycemic control in Chinese patients with better controlled type 2 diabetes: a randomized, crossover, controlled feeding trial. Nutr Metab (Lond) 2017;14:51. doi: 10.1186/s12986-017-0205-3.
- Prithviraj C, Suresh K, Debarupa D, Vikas G. Role of Antioxidants in Common Health Diseases. Research J Pharm and Tech 2009;2:238-44.
- DEMİR E, YILMAZ Ö. The Effect of Bitter Almond Oil on The Some Alterations in Liver Tissue of Experimental Diabetic Rats. Van Vet J 2015; 26:17-23.
- Gahlot K, Lal VK, Jha S. Total Phenolic content, flavonoid content and In vitro antioxidant activities of Flemingia species (Flemingia chappar, Flemingia macrophylla and Flemingia strobilifera). Res J Pharm Technol 2013;6:516-23.
- Farombi EO, Hansen M, Ravn-Haren G, Møller P, Dragsted LO. Commonly consumed and naturally occurring dietary substances affect biomarkers of oxidative stress and DNA damage in healthy rats. Food Chem Toxicol 2004;42:1315-22. doi: 10.1016/j.fct. 2004.03.009.
- 10. Patil L, Balaraman R. Protective effect of green tea extract on chemically induced testicular damage in rats. Research J Pharm and Tech 2009;2: 837-41.
- 11. Jain N, Goyal S, Ramawat KG. Radical scavenging activity and total phenolic content in selected fruits and vegetables. Research J Pharm and Tech 2012:5:121-4.
- 12. Humaish HH, Alasadi A, Aldafae I. Evaluation the Relationship between Oral Contraceptives Containing Drospirenone with Dyslipidemia and Risk of Cardiovascular Diseases among Women in Al-kut City. Indian J Med Forensic Med Toxicol 2020;14:1920-6.
- 13. Vijayakumar K, Anand AV. Protective effects of Psidium guajava and its isolated fraction on CCl4 induced oxidative stress. Res J Pharm Technol 2016;9:1155-60. DOI: 10.5958/0974-360X.2016.00220.1.
- Schumacker PT. Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 2006;10:175-6. doi: 10.1016/j.ccr.2006.08.015.
- 15. Jamshed H, Gilani AH. Lower dose of Almonds exhibits vasculoprotective effect when given in empty stomach. Int J Pharmacol 2015:11:122-9
- Rao AV, Balachandran B. Role of oxidative stress and antioxidants in neurodegenerative diseases. Nutr Neurosci 2002;5:291-309. doi: 10.1080/1028415021000033767.
- 17. Hitchon CA, El-Gabalawy HS. Oxidation in rheumatoid arthritis. Arthritis Res Ther 2004;6:265-78. doi: 10.1186/ar1447.
- Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature 2006;444:875-80. doi: 10.1038/ nature05487.
- Shenkin A. Basics in clinical nutrition: Trace elements and vitamins in parenteral and enteral nutrition. E Spen Eur E J Clin Nutr Metab 2008;3:e293-7. doi: 10.1016/j.eclnm.2008.07.011
- 20. Berger MM, Baines M, Raffoul W, Benathan M, Chiolero RL, Reeves C, et al. Trace element supplementation after major burns modulates antioxidant status and clinical course by way of increased tissue trace

- element concentrations. Am J Clin Nutr 2007;85:1293-300. doi: 10.1093/ajcn/85.5.1293.
- Kumar SB, Dhanraj M. Role of Vitamin C in Body Health. Research J Pharm and Tech 2018;11:1378-80. doi: 10.5958/0974-360X.2018. 00257.3
- Feng P, Li TL, Guan ZX, Franklin RB, Costello LC. Direct effect of zinc on mitochondrial apoptogenesis in prostate cells. Prostate 2002;52: 311-8. doi: 10.1002/pros.10128.
- Tapiero H, Tew KD. Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother 2003;57:399-411. doi: 10.1016/s0753-3322(03)00081-7.
- 24. Kirtawade R, Salve P, Kulkarni A, Dhabale P. Herbal antioxidant: Vitamin C. Research J Pharm and Tech 2010;3:58-61.
- Olaniyi JA, Arinola OG. Essential trace elements and antioxidant status in relation to severity of HIV in Nigerian patients. Med Princ Pract 2007;16:420-5. doi: 10.1159/000107745.
- Kato K, Vo PHT, Furuyashiki T, Kamasaka H, Kuriki T. Co-ingestion of whole almonds and almond oil with carbohydrate suppresses postprandial glycaemia in mice in an insulin-dependent and insulinindependent manner. J Nutr Sci 2019;8:e25. doi: 10.1017/jns.2019.22.
- King EJ, Wootton IDP. In: Wootton IDP, eds. Micro-Analysis in Medical Biochemistry, 4th ed. London, UK: Churchill, 1964; pp 71-73, 174.
- Randox Ltd. Determination of superoxide dismutase and Glutathione peroxide. Tech Bull on free radical 1994;1994:12-14.
- Khare P, Kishore K, Sharma DK. Catalase and Superoxide Dismutase (SOD) activity in Swiss albino mice treated with ethanolic leaf extract of Madhuca longifolia. Research J Pharm and Tech 2019; 12:4434-7. doi: 10.5958/0974-360X.2019.00764.9
- Kakkar R, Kalra J, Mantha SV, Prasad K. Lipid peroxidation and activity of antioxidant enzymes in diabetic rats. Mol Cell Biochem1995; 151:113-9.
- Tabassum SS, Rajaram C, Kumar SN, Manohar R, Reddy KR. Evaluation of Hepatoprotective activity of the Methanolic Extract of Barleria Cuspidata against CCl4 Induced Liver damage in Experimental Rats. Research J Pharm and Tec 2020;13:538-42. doi: 10.5958/0974-360X.2020.00101.8
- Li Y, Trus MA. Oxidative stress and its relationship to carcinogen activation. In: Cutler RG, Packer L, Bertrom J, Mori A, eds. Oxidative Stress and Aging. Basel, Switzerland: Birkhauser Verlag, 1995; pp 203-20. Doi: 10.1007/978-3-0348-7337-6_21
- Patel PK, Prajapati NK, Dubey BK. Hepatotoxicity: causes, Symptoms and herbal remedies. Research J. Pharmacognosy and Phytochemistry 2012; 4: 104-11.
- Ozen OA, Yaman M, Sarsilmaz M, Songur A, Kus I. Testicular zinc, copper and iron concentrations in male rats exposed to subacute and subchronic formaldehyde gas inhalation. J Trace Elem Med Biol 2002;16:119-22. doi: 10.1016/S0946-672X(02)80038-4
- 35. Sandre C, Agay D, Ducros V, Van Uye A, Cruz C, Chancerelle Y, et al. Early evolution of selenium status and oxidative stress parameters in rat models of thermal injury. J Trace Elem Med Biol 2004;17:313-8. doi: 10.1016/s0946-672x(04)80034-8.
- Dhawan D, Goel A, Gautam CS. Effects of zinc intake on liver enzymes in carbon tetrachloride-induced liver toxicity. Medical Science Research 1992;20:55-6.
- Yu RA, Xia T, Wang AG, Chen XM. Effects of selenium and zinc on renal oxidative stress and apoptosis induced by fluoride in rats. Biomed Environ Sci 2006;19:439-44.
- Orrenius S, Burkitt MJ, Kass GE, Dypbukt JM, Nicotera P. Calcium ions and oxidative cell injury. Ann Neurol 1992;32(Suppl 1):s33-42. doi: 10.1002/ana.410320708.
- Quintanar-Escorza MA, González-Martínez MT, Navarro L, Maldonado M, Arévalo B, Calderón-Salinas JV. Intracellular free calcium concentration and calcium transport in human erythrocytes

- of lead-exposed workers. Toxicol Appl Pharmacol 2007;220:1-8. doi: 10.1016/j.taap.2006.10.016.
- 40. Altura BT, Altura BM. Endothelium-dependent relaxation in coronary arteries requires magnesium ions. Br J Pharmacol 1987;91:449-51. doi: 10.1111/j.1476-5381.1987.tb11235.x.
- 41. Hans CP, Chaudhary DP, Bansal DD. Magnesium deficiency increases oxidative stress in rats. Indian J Exp Biol 2002;40:1275-9.
- 42. Weglicki WB, Mak IT, Kramer JH, Dickens BF, Cassidy MM, Stafford RE, et al. Role of free radicals and substance P in magnesium deficiency. Cardiovasc Res 1996;31:677-82.
- Olatunji LA, Soladoye AO. Effect of increased magnesium intake on plasma cholesterol, triglyceride and oxidative stress in alloxandiabetic rats. Afr J Med Med Sci 2007;36:155-61.
- Mandalari G, Faulks RM, Rich GT, Lo Turco V, Picout DR, Lo Curto RB, et al. Release of protein, lipid, and vitamin E from almond seeds during digestion. J Agric Food Chem 2008;56:3409-16. doi: 10.1021/jf073393v.

- Meagher EA, Barry OP, Lawson JA, Rokach J, FitzGerald GA. Effects of vitamin E on lipid peroxidation in healthy persons. JAMA 2001;285:1178-82. doi: 10.1001/jama.285.9.1178.
- Fadlallah EAS, Abd Elal SZ, Seddik, AA. Protective effect of olive, almond and ax seed oil against carbon tetrachloride-induced hepatotoxicity in rat models. African J Biol Sci 2013;6:243-59.
- Dong Q, Banaich MS, O'Brien PJ. Cytoprotection by almond skin extracts or catechins of hepatocyte cytotoxicity induced by hydroperoxide (oxidative stress model) versus glyoxal or methylglyoxal (carbonylation model). Chem Biol Interact 2010;185:101-9. doi: 10.1016/j.cbi.2010.03.003.
- 48. Jia XY, Zhang QA, Zhang ZQ, Wang Y, Yuan JF, Wang HY, et al. Hepatoprotective effects of almond oil against carbon tetrachloride induced liver injury in rats. Food Chem 2011;125:673-8. Doi: 10.1016/j.foodchem.2010.09.062.
- Choudhury K, Clark J, Griffiths HR. An almond-enriched diet increases plasma α-tocopherol and improves vascular function but does not affect oxidative stress markers or lipid levels. Free Radic Res 2014;48:599-606. doi: 10.3109/10715762.2014.896458.