DOI: https://doi.org/10.47391/JPMA.669

2

1

- 3 Neural tube defects, their implications and solutions in Muslim
- 4 society

5

- 6 Muhammad Fayyaz¹, Arshad Khushdil², Shehla Baqai³
- 7 1 Sindh Institute of Urology & Transplantation (SIUT), Karachi, Pakistan; 2 Department of
- 8 Paediatrics, Army Medical College, Rawalpindi, Pakistan; 3 Department of Gynecology
- 9 Obstetrics, Army Medical College, Rawalpindi, Pakistan
- 10 **Correspondence:** Muhammad Fayyaz. **Email**: drfayyaz80@gmail.com

11

- 12 Abstract
- Neural Tube Defects (NTDs) are serious congenital abnormalities and most of
- them are incompatible with life. The extremely debilitating quality of life, if one
- survives, calls for actions to prevent such sufferings. Experts agree on the role of
- Folic Acid in primary prevention of NTDs, yet, despite best efforts, the use of
- Folic Acid has reduced NTDs by only 50%. These cases too can be prevented by
- employing secondary preventive measures. These involve timely interruption of
- 19 pregnancy -- a decision which, in addition to a medical judgment, is based on
- 20 ethics, social cultural and Muslim religious value systems in Pakistan. Indeed, it
- is a complex issue but empathic understanding and strong co-ordination, once
- established between different disciplines, can help parents to decide and opt for
- 23 necessary secondary prevention by interruption of malformed foetus within the
- 24 given time frame mandated by medical and religious authorities.
- **Keywords:** Neural Tube Defects, Interruption of Pregnancy, Pakistan, Ethics,
- 26 Muslim

27

Case Vignette

29

Ahmed (name changed), a three-month-old make baby (5kg) had Lumbosacral 30 Meningomyelocele (MMC) and Hydrocephalus – Neural Tube Defects – since 31 birth and was being treated at Combined Military Hospital (CMH) Peshawar. He 32 was operated on by the neurosurgical team in October 2018. Within one week of 33 surgery, the baby developed the common complication of 'shunt blockade' as 34 well as Aspiration Pneumonia. He was admitted to paediatric intensive care unit 35 (PICU) and later on shifted to Military Hospital (MH) Rawalpindi for further 36 37 expert management. Because of the unstable clinical condition, he could not be operated upon immediately for shunt blockade and so supportive care was 38 provided at the MH Rawalpindi. Meanwhile, the baby developed stridor (noisy 39 breathing) due to raised intra-cranial pressure (ICP). 40 As stridor was due to the pressure effects, it was decided to do ventricular-tap on 41 daily basis in order to reduce the pressure effects. After a week of daily 42 ventricular-tap of approximately 40-50ml, there was a dramatic improvement in 43 his stridor and within a few days it disappeared completely. Neurosurgical 44 opinion was obtained again for shunt blockade, and surgery was performed to 45 resolve that. Subsequently, the baby stabilised clinically, started tolerating oral 46 feeds and was discharged after prolonged and painful processes of different 47 treatments with an advice for regular follow-ups. 48 During this ordeal, the family was divided between decision to keep the baby at 49 hospital or home consistently for many months, which led to improper care and 50 illnesses in other children as well. But this may not be the end of trouble, because 51 such babies frequently struggle with bladder/bowel problems, kidney issues and 52 seizures, etc. 53

Case Report

54

55

The case vignette mentions a baby with Meningomyelocele (MMC) and

57 Hydrocephalus, which are extremely serious birth defects in new borns.

According to a 2018 WHO report, every year 300,000 infants are born in Pakistan 58 with severe birth defects and die within four weeks. MMC, anencephaly and 59 some other congenital anomalies are birth defects arising from inadequate 60 development of neural tube and are grouped as Neural Tube Defects (NTDs). 61 NTDs are second commonest birth defects. In Pakistan, the incidence of NTDs is 62 1.000 deliveries, while hydrocephalus, and 13.90 anencephaly 63 meningomyelocele are the commonest NTDs.² 64 In fact, NTDs are neural tube closure problems that occur at the very beginning 65 of gestation (25-35 days). They often lead to lifelong disabilities because of 66 sensory, motor, orthopaedic and urologic problems in the life to come. Parents of 67 such children feel emotionally drained and develop anxiety, depression and other 68 psychological problem⁴ as satisfactory cure and treatment of severe forms of 69 NTDs is still unavailable. 70 As mentioned above, on the one hand, the postnatal management of such defects 71 doesn't provide satisfactory cure, and the infant and family have to bear the 72 burden of disabilities for life in terms of emotional and financial baggage. And 73 on the other hand, persistent care and hospitalisations put a lot of strain on 74 hospital resources and skilled manpower with poor outcomes. The agony and 75 76 frustration with which the family and infant goes through, becomes unbearable as time passes. These all have led to thinking-over about different strategies to 77 prevent such congenital defects which are either incompatible with life or have 78 extremely debilitating life conditions. 79 Promisingly, different technological developments in the field of medical 80 diagnostics, in previous decades, have given us a window of handling them 81 prenatally. NTDs can be diagnosed accurately, to a varying degree, with the help 82 83 of screening maternal serum Alpha Fetoprotein (AFP) and subsequently, targeted and detailed ultrasound scan⁵ in early second trimester -- solidifying the 84 diagnostic accuracy. These results can be helpful in managing the pregnancy 85 86 timely, if it turns out to have a problematic foetus, as done in many countries.

But, before that, is there anything which can be done to prevent NTDs occurrence in the first place? The answer is yes.

89

90

Discussion

The best strategy is always preventing a disease before it even occurs. In 1991, 91 a MRC vitamin trial conducted in seven countries led to a remarkable revelation: 92 Folic Acid can prevent NTDs in high risk women, if introduced well before 93 conception⁶ It is even beneficial for all women of reproductive age group. This 94 95 led to a widespread Folic Acid use advisory by US public health service to all women of child-bearing age in 1992. It also led the world to fortify grains with 96 Folic acid, and FDA even mandated that in 1998. In 2007, a follow-up trial by De 97 Wals et al jotted down only 46% reduction in NTDs after all such measures even 98 in a well-resourced environment of Canada.⁷ Implicitly, it shows >50% cases of 99 NTDs still occurred though Canada doesn't receive the greatest of NTDs burden 100 as compared to poor places in the world, as shown by Yang J et al. in 20078 and 101 Grewal J et al in 2008. Countries such as Pakistan, where food fortification with 102 Folic Acid is not mandated, literacy is low and most pregnancies are unplanned, 103 have higher number of cases of NTDs, and far greater sufferings and non-optimal 104 health resource utilisation. So, despite wonderful effects of Folic Acid, the 105 prevailing situation asks for some other preventive measures at secondary levels 106 as well, when NTDs do occur. 107 It has been revealed that if we can accurately diagnose a life-incompatible 108 congenital anomaly at an appropriate time, then families can be helped in 109 deciding about the interruption of such pregnancies. This secondary preventive 110 strategy has been working well in many countries⁴ having favourable laws, socio-111 112 cultural or religious value systems. In Pakistan, it is not working well and there are three reasons for this: 113

- 114 1. The inaccessibility of maternal serum AFP levels as a part of routine
- antenatal care early in the second trimester, which is a standard of care in US
- since 1980.¹⁰
- 117 2. Though detailed ultrasound scan (Anomaly Scan) is standard of care in
- most centres in Pakistan, there are inadvertent delays and expert ultrasonologists
- are not available in most mother and child health centres to accurately identify
- such defects.
- 121 3. If a case of NTD finally gets identified, despite above mentioned
- difficulties, there is a need to take the most important decision about interruption
- of pregnancy, which is not purely a technical decision but holds religious and
- ethical connotations. Pakistan, a predominantly Muslim society, needs an Islamic
- ruling on the subject, but there is no monolithic Islamic jurisprudence available.
- At the most, a range of rulings and opinions based on various schools of thought,
- are available which discuss ensoulment of foetus. Summarily, an overview of
- them, largely a resolution (fatwa) of The Islamic Jurisprudence Council of
- Makkah during its 12th session in February 1990, suggests that 120 days (19.14
- weeks) in pregnancy is the maximum limit for interruption in case of foetal issues
- under a decision of committee of competent physicians.³ Additionally, no ruling
- currently exists in Islamic jurisprudence which allows interruption of pregnancy
- based on foetal complications and anomalies beyond 120 days. Although, if the
- mother has serious issues which, in medical judgment, can be dangerous to her
- life; all muslim schools of thought accepts it for interruption of pregnancy even
- 136 after 120 days.⁴
- 137 So, it's an extremely delicate affair. In a nutshell, screening facility of maternal
- serum AFP as well as expert ultrasonography should be available prior to 19.1
- weeks of pregnancy, in order to proceed with the decision of interruption to avoid
- lapses on religious grounds. This extremely narrow window, where a huge
- difference can be made, calls for clear understanding of the issue by obstetricians,
- neonatologists, radiologists, pathologists, hospital administrators and health

policy makers. In our view, obstetricians, being the custodian of antenatal care, are the key players. They have to assume the lead role and essentially push hospital policy-makers for maternal serum AFP as standard of care in 15-16 weeks and detailed anomaly scans in 17-18 weeks of gestation.¹¹ Holding of sensitisation programmes from time to time by hospitals for all the abovementioned specialists, can help obstetricians to make necessary co-ordination. smoothly. It is also important to add here that all the strategies mentioned above can only work when patients report early for booking in case of pregnancy, so that obstetricians can plan their antenatal care in a standardised manner. Additionally, religious scholars in general and Council of Islamic Ideology in particular are needed to deliberate on the issue of public importance. They need to consider the legitimate problem of foetus, which medical science is able to diagnose now, as a case of interruption of pregnancy after the 120-day period. After all, human sufferings and hardships have been considered as a valid reason to re-consider many of rulings for different situations including Haj. When abortion (medical interruption) is not absolutely immoral, then, carrying a known malformed foetus to term and push the women for it is an immoral act. It would also be unethical to knowingly act in a way which increases the suffering for life and bleed the scarce resources as well.

162

163

164

165

166

167

168

169

170

171

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

Conclusion

Neural Tube Defects are serious congenital anomalies where prevention is the best strategy. Medicine, religion and ethics needs to be on one page to solve this problem of humanity. The ideal is Folic Acid food fortification to maximise their primary prevention. Still, a lot of cases do occur and need secondary prevention. All stakeholders need to be educated and sensitised. Maternal serum AFP should be made part of routine antenatal care while Anomaly scans should be pushed-up in second trimester so that in case of NTD, if decided by parents, medical interruption of pregnancy can be done before 19.1 weeks. Religious scholars are

- also urged to deliberate on such situations and pave the way for certain changes
- in rulings regarding interruption of pregnancy so as to lessen human suffering.

174

- Note: 120 days (17.14 days) in Islamic fatwas are counted from the day of
- conception but in modern clinical practice Expected date of delivery (EDD) is
- calculated 2 weeks (14 days) prior to conception, which mandates to add 14 days
- or 2 weeks in 120 days, as mentioned in fatwas, for clinical considerations.

179

- Disclaimer: Permission was sought from parents of baby to use the clinical data
- without identifiers and they happily consented.
- 182 **Conflict of Interest:** None.
- 183 **Source of Funding:** None.

184

185 **References**

- 1. Shah R. Birth defects [Internet]. DAWN.COM. 2018 [cited 2019 Feb 3].
- Available from: https://www.dawn.com/news/1389431
- 2. Goswami P, Memon S, Khimani V, Rajpar F. Frequency and variation of
- neural tube defects at Liaquat University Hospital Jamshoro, Sindh, Pakistan.
- 190 International Journal of Research in Medical Sciences. 2015 [cited 2019 Mar
- 191 27];3(7):1707–11. Available from:
- https://www.msjonline.org/index.php/ijrms/article/view/1582
- 3. Qraraat Al-Majma al-Faqeeh Al-Islami Fid Duraat Eshreen (1398-1432)
- 194 AH/1977-2010 AD). 3rd ed. Makkah Tul Makarmah: Raabta Al-alam Al-
- 195 Islami; 2010. Available from:
- https://d1.islamhouse.com/data/ar/ih_books/single_010/ar_qrarat_elmogama3_a
- 197 lfiqhy.pdf
- 4. Al-Alaiyan S, AlFaleh KM. Aborting a Malformed Fetus: A Debatable Issue
- in Saudi Arabia. J Clin Neonatol. 2012 [cited 2019 Apr 10];1(1):6–11. Available
- from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761984/

- 5. Blumenfeld Z, Siegler E, Bronshtein M. The early diagnosis of neural tube
- defects. Prenat Diagn. 1993 Sep;13(9):863–71.
- 6. Prevention of neural tube defects: results of the Medical Research Council
- Vitamin Study. MRC Vitamin Study Research Group. Lancet. 1991 Jul
- 205 20;338(8760):131–7.
- 7. De Wals P, Tairou F, Van Allen MI, Uh S-H, Lowry RB, Sibbald B, et al.
- 207 Reduction in Neural-Tube Defects after Folic Acid Fortification in Canada. New
- England Journal of Medicine [Internet]. 2007 Jul 12 [cited 2019 Feb
- 3];357(2):135–42. Available from: https://doi.org/10.1056/NEJMoa067103
- 8. Yang J, Carmichael SL, Canfield M, Song J, Shaw GM. Socioeconomic Status
- in Relation to Selected Birth Defects in a Large Multicentered US Case-Control
- 212 Study. Am J Epidemiol [Internet]. 2008 Jan 15 [cited 2019 Feb 3];167(2):145–
- 54. Available from: https://academic.oup.com/aje/article/167/2/145/127704
- 9. Grewal J, Carmichael SL, Song J, Shaw GM. Neural tube defects: an analysis
- of neighbourhood- and individual-level socio-economic characteristics. Paediatr
- 216 Perinat Epidemiol [Internet]. 2009 Mar [cited 2019 Feb 3];23(2):116–24.
- Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2865191/
- 10. Norem CT, Schoen EJ, Walton DL, Krieger RC, O'Keefe J, To TT, et al.
- Routine ultrasonography compared with maternal serum alpha-fetoprotein for
- neural tube defect screening. Obstet Gynecol. 2005 Oct; 106(4):747–52.
- 221 11. ACOG NTDs Practice Bulletin No. 187. Obstetrics & Gynecology
- 222 [Internet]. 2017 Dec 1 [cited 2019 Apr 10];130(6). Available from:
- 223 insights.ovid.com