Aquaporins; systemic, functional and therapeutic correlations in health and disease
Talal Ahmed, Sarah Ghafoor

Abstract
Aquaporins are transcellular proteins that majorly consist of a tetrametric hour-glass-like structure. Aquaporins have a definitive function in transpositioning of water and solutes across cell membranes. The current review was planned to provide information regarding structure, expression and functions of aquaporins in the human body, and to generate a comprehensive summary of physiological and pathophysiological correlations related to aquaporins and their therapeutic implications. Absence or mutations of different aquaporins are believed to be linked to clinical diseases, including Sjogren's syndrome, nephrogenic diabetes insipidus, liver dysfunction and obesity. Modern therapeutic techniques are utilising aquaporins in gene therapy for Sjogren's syndrome and cholestasis. The narrative review aims at providing a comprehensive description of localisation, function, abnormal clinical conditions and therapeutic implications of aquaporin proteins.

Keywords: Classification, Clinical, Human aquaporins, Localisation, Structure, Water channels.

DOI: https://doi.org/10.47391/JPMA.01-063

Introduction
Aquaporins (AQPs) are a lineage of transmembrane proteins which assist in transpositioning across the cell membranes, mainly consisting of water and solutes. At least 13 types of AQPs have been identified (AQP-0 to AQP-12). They are divided into classical and non-classical categories. Classical AQPs include the ones that are involved in water permeability; AQP-0, AQP-1, AQP-2, AQP-4, AQP-5, AQP-6 and AQP-8. Classical AQPs also include aquaglyceroporins; AQP-3, AQP-7, AQP-9 and AQP-10. In addition to water, they also assist in the transport of glycerol and some neutral solutes. Non-classical AQPs, also referred to as sub-cellular or superaquaporins, include AQP-11 and AQP-12, and their function in controlling the water permeability is not well-established and the exact physiological role is yet to be determined (Figure-1).

Structure of Aquaporins
Aquaporins are small, identically hydrophilic membrane proteins that consist of monomers. Each monomer comprises six transmembrane helix, making AQPs act as a hydrophilic integral membrane protein. The monomers vary in sizes and mammalian AQPs range 26-34KDa. These monomers contain amino acid sequences, making a bilayer membrane that contains five connecting loops from A to E. Loop B and E contains classical asparagine-proline-alanine (NPA) motifs in all AQPs (Figure-2).

Studies based on light microscopy and three-dimensional (3D) microscopy show the structure of AQP-1 consists of a lipid bilayer which

Department of Oral Biology, University of Health sciences, Lahore, Pakistan.
Correspondence: Sarah Ghafoor. Email: sarahghafoor@uhs.edu.pk
exists as a ‘tetramer’ in which each subunit consists of its own pore. AQP-1 and AQP-2 consist of four exons and have an identical exon-intron boundary. The subunit of AQP-2 relates to the structure of AQP-1 as a tetrametric structure and is persistent as an hour-glass model with minor alterations of crystal sheets consisting of densities of coats sandwiched between isolated layers at the region of N and C terminals. The structure of AQP-3 also resembles the structure of other AQPs as it also consists of six transmembrane domains. AQP-3 consists of six exons in comparison to four exons of AQP-1 and AQP-2, and, having a different sequence of exon-intron boundary, suggests that AQP-3 has a different developmental branch compared to other AQPs. Similar to AQP-1, AQP-4 also consists of a tetra-metric structure with six transmembrane helices. The structure of AQP-5 is similar to other AQPs that consists of tetramers and each tetramer consists of six transmembrane domains with B and E loops. AQP-5 differs from other AQPs as it has slight C terminal modification and its crystals lack typical four-fold symmetry because the crystals of AQP-5 imitates the identical triad of plant APQs such as spinach AQ phosphotidylinositol-4,5-bisphosphate (SoPIP2;1) water channel, which is a major integral protein of spinach AQPs.

Localisation and function of AQPs

In mammals, AQP-1 is localised in the proximal tubules and thin loop of Henle’s apical and basolateral membrane where it acts as a pathway for water from tubular lumen to interstitium. In humans, AQP-1 is also involved in secretory regulation of cerebrospinal fluid (CSF). In the eye, it regulates the secretion of aqueous humour which is located in the anterior chamber of the eye. AQP-1 also regulates the secretory regulation of bile produced by the liver and in lungs, and it also regulates bronchial circulation.

AQP-2 is found to be localised on the endothelial and myoepithelial cells of salivary glands of humans. In humans, AQP-2 functions as a secretory regulator of water channels in the renal collecting tubules, acting on vasopressin-water channels. AQP-2 is systemised by the mechanism of exocytosis which is the receptor-moderated action of adenylyl cyclase-protein kinase A phosphorylation. AQP-2 in the apical membrane provides an intracellular pathway for water to move from the lumen of the renal collecting ducts into the interstitium.

In mammals, AQP-3 is localised at the basolateral membranes of the renal collecting ducts, colon, small intestine, kidney, liver, lungs and plasma membrane of skeletal muscles. In humans, the salivary glands are categorised as exo-merocrine glands that consist of several basolateral membranes which contain groups of cells called acinar cells. Theses acinar cells are further subdivided into serous or mucus and AQP-3 is often localised in membrane of these cells. During the maturation stage of formation of enamel, the process of modulation takes place and ameloblasts modulate in possessing either a ruffled border or a smooth border. It is assumed that AQP-3 plays a functional role in assisting modulation of ameloblast during the maturation stage of enamel formation.

AQP-3 has a critical role in sperm osmoregulation because AQP-3 is present on the sperm’s tail, and helps in volume-regulation by prohibiting cellular swelling in the female reproductive tract and maintaining the structural integrity of sperms. In humans, AQP-4 is also an important water-channel protein mostly located in the brain and is a site of action of many drugs that are used as therapeutic modalities for cerebral oedema, bipolar disorders and medial temporal lobe epilepsy. These anti-epileptic drugs include diazepams and phenobarbitals. AQP-4 exists in glial cells as a full-length protein and is localised in glial lamellae surrounding vasopressin-secretory neurons. In addition, AQP-4 is found in the sarcolemma of fast-twitch fibres in skeletal muscle. The hypothalamus plays important physiological roles that include osmo-regulation, thermo-regulation and glucose-osmo...
Aquaporins; systemic, functional and therapeutic correlations in health and disease

Figure-3: Schematic presentation of localisation of different types of aquaporins (AQPs) in human tissues and organ. A) AQP-1 and AQP-4 are found in anterior chamber of the eye and epithelial cells of cornea of eye. B) AQP-1, AQP-2 and AQP-3 are found in apical membrane of renal collecting tubules of kidney. C) AQP-1 and AQP-2 are located in glial cells of hypothalamus. D) AQP-7 and AQP-8 are found in the plasma membrane of adipocytes and mitochondrial membrane in hepatocytes. E) AQP-5 is found in the basement membrane of acinar cells of salivary glands. F) AQP-1 is found in the basolateral membrane of large and small intestine. The figure has been conceptualised in line with Mescher et al, 2018, and Drake et al, 2019.6,39

regulation. AQP-4 is localised in different regions of hypothalamus, including glial lamella where it is believed that AQP-4 may play a physiological functioning role in osmo-regulation, thermoregulation and glucose-osmo regulation20 (Figure-3).

AQP-5 is extensively distributed in different regions of the human body, including submucosal, sweat, salivary and lacrimal glands, from digestive to renal, respiration and reproductive systems.21 In the human eye, AQP-5 is present in plasma membrane of epithelium of lens fibre cells, and plasma membrane of corneal epithelium. It is also localised in the apiical and basolateral membranes of acinar cells of lacrimal and salivary glands.21 Physiologically, it is believed that AQP-5 helps in the production of primary saliva and tear formation and their secretory regulation.22 AQP-5 is also expressed in the mammary glands, and it is localised in apical membrane of ductal cells in the mammary glands where it is expressed in the apical membrane of ductal cells. In human lungs, AQP-5 is localised in submucosal glands, epithelial cell membrane, and different types of pneumocytes. In the digestive system, AQP-5 is localised in different areas which consists of apical membranes of the pancreas, as well as intercalated and interlobular ductal cells. In integumentary system, AQP-5 is expressed in the sweat glands, keratinocytes and a glandular layer of skin. It is also understood that AQP-5 is present in secretory membranes of sweat glands. AQP-5 is also expressed in renal cortex, in the apical membrane of Type-B intercalated cells in the renal collecting duct. In the female reproductive system, AQP-5 is expressed in the cytoplasm of vaginal epithelial cells, in the basolateral membrane of endometrial glandular epithelial cells and in the plasma membrane of uterus smooth muscle cells.21

In mammals, AQP-7 is expressed in the secretory membrane of adipocytes and it functions as an important protein in glycerol transport in adipocytes.23 AQP-8 is a cross-functional protein channel which is expressed in the inner mitochondrial membrane in hepatocytes. It not only acts as a water channel, but also works in facilitating endorsement of ammonia in hepatocytes, and detoxifies it by converting into urea. It also releases hydrogen peroxide, which in humans reduces cholesterol loading and increases its depletion24 (Table-1).

Clinical pathophysiology of AQPs
Lack of AQP proteins in humans suggests several conditions with pathological importance and signifies the importance of AQP-1. The Colton blood (CO) group is a rare protein-based blood group which consists of antigens such as colton allele a (COa), and Colton allele b (COb). In response to these aforementioned antigens the CO group has immunoglobin G (IgG) based antibodies such as anti-COa and anti-Cob.25 Polymorphism of AQP-1 makes it impossible for CO individuals to receive a blood transfusion due to its mutation which can lead to transfusion reaction and haemolytic anaemia. AQP-1 mutations also cause defects in urine concentration and disturbance of water movement between vascular space and interstitium. This leads to failure to detect subacute or chronic fluid overload.26 AQP-2 may be involved in some of the aetiological causes of nephrogenic diabetes insipidus (NDI), and AQP-2 can also act as a potential biomarker for efficacy of drugs, such as tolvaptan-containing drugs that are given in decompensated heart failure complicated by diabetic-nephrotic syndrome.27 Deficiency of AQP-3 is linked with a type of NDI, and causes impaired wound healing in epidermoids of human
Table-1: Types of aquaporins (AQPs), localisation and functions.

<table>
<thead>
<tr>
<th>Aquaporin</th>
<th>Localization</th>
<th>Function</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQP-1</td>
<td>In human renal system it is expressed in the secretary membranes of thin loop of henle, collecting tubules and anterior chamber of eye, blood cells i.e RBCs and epithelium of lungs</td>
<td>Pathway for water, secretory regulation of cerebrospinal fluid (CSF), aqueous humour and bile.</td>
<td>Nielsen and Agre, 1995, Pallone et al, 1997, Delporte and steinfeld, 2006</td>
</tr>
<tr>
<td>AQP-3</td>
<td>Basolateral membranes of collecting ducts and colon, skin, small intestine, skeletal muscles, lungs, eye, tail of sperms and acinar cells of salivary glands</td>
<td>Stimulates modulation between smooth and ruffled-ended ameloblasts, maintains structural integrity of sperms</td>
<td>Wang et al, 2003, Chen and Duan, 2011</td>
</tr>
<tr>
<td>AQP-5</td>
<td>Acinar cells of the ducal membrane of salivary and lacrimal glands, epithelium of lens and cornea, secretary membranes of submucosal, sweat, intercalated and intraductal cells of pancreas, apical membrane of keratinocytes</td>
<td>Primary saliva formation, tears formation</td>
<td>Delporte and Steinfeld, 2006</td>
</tr>
<tr>
<td>AQP-7</td>
<td>Plasma membrane of adipocytes</td>
<td>Glycerol transport in adipocytes</td>
<td>Hibuse et al, 2005</td>
</tr>
<tr>
<td>AQP-8</td>
<td>Inner mitochondrial membrane in hepatocytes</td>
<td>Detoxification of ammonia to urea in hepatocytes</td>
<td>Danielli et al, 2017</td>
</tr>
</tbody>
</table>

Table-2: Clinical implications of different types of aquaporins (AQPs) in human tissues and organs.

<table>
<thead>
<tr>
<th>Aquaporin</th>
<th>Clinical implication</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQP-2</td>
<td>May cause Nephrogenic-Diabetes Insipidus</td>
<td>Tanaka et al, 2016</td>
</tr>
<tr>
<td>AQP-3</td>
<td>May cause Nephrogenic-Diabetes Insipidus</td>
<td>Ma et al, 2000, Sasaki, 2012</td>
</tr>
<tr>
<td>AQP-4</td>
<td>One of the etiological factor of Mesial temporal lobe epilepsy, part of pathophysiology of brain edema, hepatoencephalopathy, seizures and brain tumors</td>
<td>Eid et al, 2005, Lacovetta et al., 2012</td>
</tr>
<tr>
<td>AQP-5</td>
<td>Xerostomia, Xerophthalmia</td>
<td>Ma et al, 1999</td>
</tr>
<tr>
<td>AQP-7</td>
<td>One of the contributing factor for obesity</td>
<td>Hibuse et al, 2005</td>
</tr>
<tr>
<td>AQP-8</td>
<td>One of the contributing factor for obesity</td>
<td>Danielli et al, 2017</td>
</tr>
</tbody>
</table>
has widespread multiple aetiological factors, one of which is glandular inflammation and degeneration.37 The treatment regime in the present era for SS is symptomatic relief as no curative treatment exists. However, in experimental animal models, gene therapy is being studied. AQP-1 gene therapy restores salivary and lacrimal fluid movement and decreases glandular inflammation in murine model of SS.5 AQP-8 plays an important role in bile formation and down-regulation of AQP-8 by oestrogen induces failure or decrease in bile secretion which can cause liver cholestatic diseases that can progress to liver cirrhosis and even liver failure in extreme chronic cholestasis. Gene therapy of AQP-1 to oestrogen-induced cholestatic animal model showed increase water permeability and increased bile secretion, thereby improving the bile secretory dysfunction.36

Conclusion

AQPs have prime importance in maintaining essential bodily functions, from producing saliva and tears to breaking-down of fats, transport and absorption of ions across kidneys, osmo-regulation and thermo-regulation, ammonia detoxification and cholesterol depletion. Deficiency of AQPs is linked to many diseases, including diabetes, SS and obesity. Future studies involving investigations based on linkage of aquaporins with systemic diseases may help in developing strategies that may reduce or completely eradicate aetiological factors and dysfunctions of systemic diseases, like xerostomia, xerophthalmia and obesity.

Disclaimer: None.

Conflict of Interest: None.

Source of Funding: The M.Phil research of Talal Ahmed are fully funded by the University of Health Sciences, Lahore, Pakistan.

References

