Introduction
Sudden cardiac death contributes to about 15% of global mortality. The majority of these deaths occur in the low and middle income countries (LMICs). In high income countries, over 50% of all cardiac arrests occur outside of the hospitals and these out-of-hospital cardiac arrests (OHCA) are one of the primary drivers for the establishment of modern pre-hospital emergency medical services (EMS). Improvement in emergency care has led to significant improvements in survival rates from 0% to as high as 40% in some settings.

Recently published reviews report incidence and outcomes of OHCA from developed countries such as Europe, North America, Asia, Australia, Canada, Japan etc. and estimated the OHCA incidence from 24/100,000 per year to 186/100,000 per year, but there is limited data on OHCA from LMICs. There are several reasons for the poor data on OHCA. Some of the reasons are related to the limitations of health information system to capture emergency-related information. With regard to the OHCA, many cases do not make it to the healthcare system which adds to difficulty in obtaining incidence information. Since incidence data on disease frequently drive public health and public policy, the focus on diseases such as cardiac arrest will remain limited unless local data is available from LMICs. Capture-recapture methodology has been used extensively in medicine and public health to study difficult-to-count populations. The current study was planned to explore the application of capture-recapture method for estimating the incidence of OHCA.

Materials and Method
This cross-sectional study was carried out from January to April 2013 in Karachi which has an estimated population of about 20 million. The city has three main public-sector referral hospitals providing general emergency care. There are also two public-sector hospitals focusing on cardiovascular diseases. In the private sector, there are three hospitals with well-organized general emergency care. For pre-hospital care, there are three main ambulance services, all of which are privately run and funded through local philanthropy and charity. Out of these three, two are primarily transport services with limited training and equipment/supplies for emergency care while one has capability to provide on-scene cardiopulmonary resuscitation (CPR), automatic external defibrillation and can initiate dispatch-assisted CPR.

Burden of out-of-hospital cardiac arrest in Karachi, Pakistan: Estimation through the capture-recapture method
Junaid Abdul Razzak, Minaz Mawani, Iqbal Azam, Courtland Robinson, Usama Talib, Muhammad Masood Kadir

Abstract
Objective: To assess the application of capture-recapture method as a potential strategy to estimate the incidence of out-of-hospital cardiac arrest.

Methods: This cross-sectional study was carried out from January to April 2013 in Karachi and comprised three public general hospitals, one public cardiac hospital, one private general hospital and two ambulance services. Two-sample capture-recapture method was used: first capture was through cardiac arrest data from two major emergency medical services and second capture was from the five teaching hospitals. Records from the hospitals and ambulance services were compared on 7 variables; name, age, gender, date and time of arrest, cause of arrest and destination hospital. Matched and unmatched cases were used in the equation to estimate the incidence of out-of-hospital cardiac arrest.

Results: Of the 630 out-of-hospital cardiac arrest cases reported, 191 (30.3%) related to the emergency medical services records and 439 (69.7%) to hospital records. The capture-recapture identified only 9 (1.4%) matched cases even with the least restrictive criteria and estimated the annual out-of-hospital cardiac arrest incidence as 166/100,000 population (95% confidence interval: 142.9 to 189.6).

Conclusion: Capture-recapture method could be a potential alternative for providing population level data in the absence of organised health information systems.

Keywords: Out-of-hospital cardiac arrest, Burden, Two source capture-recapture.
The current study comprised three public general hospitals, one public cardiac hospital, one private general hospital and two ambulance services. The average daily emergency department headcount ranged from approximately 140 patients to as high as 1000 patients a day. Only one of the five hospitals had searchable data from their emergency department (ED). The other four kept medical records for patients who were admitted to the hospital and not all ED patients due to sheer volume. Similarly, variability in data collection and storage was found in ambulance services. One of the ambulance services kept detailed record of responses such as medications given, CPR performed etc. and non-clinical data as well such as response time, transport time etc. Other data included name, gender, date and time of event, age of the patient, place of the incident, destination hospital and type of emergency which for cardiac arrest was mentioned as sudden unresponsiveness leading to death or 'heart failure', a local term used for death presumed to be due to cardiac arrest.

Data was obtained from EMS records through prospectively carried out round-the-clock surveillance of all patients presenting with presumed cardiac arrest to the selected hospitals for which 17 data collectors were hired who worked in 8-hour shifts across the five EDs and collected information using a data-collection form. Cases of OHCA from EMS were defined as cases in which ambulances were dispatched for patients with sudden cessation of breathing and responsiveness or suspected sudden death due to heart failure in patients with no history of trauma. OHCA from hospital EDs were defined as patient presenting to the ED with a history of unresponsiveness and sudden cessation of respiration and was diagnosed as cardiac arrest by the treating emergency physician.

Approval was obtained from the ethics review committee (ERC) of Aga Khan University Hospital, Karachi, as well as from the participating institutions. Capture-recapture method was used to estimate the burden of OHCA utilising information from two sources. It comprised comparing two data sources for identifying cases with common information present in both the lists; also called 'matches'. The first capture was all patients above 18 years with OHCA of cardiac aetiology from the records of the two major ambulance services. The recapture was the similar sample from our hospital-based surveillance system.

The information on the following variables was recorded: patient's name, age, gender, date and time of arrest, cause of arrest and name of destination hospital from both the data sources. These data sources were then compared case-by-case for identifying matched cases. The degree of matching was defined based on three standards (Table-1). Standard A was the strictest criteria where it was required to have all seven variables match in cases from both the data sources. For each subsequent standard, the criteria were progressively made less strict. However, it was compulsory for all standards to have the similar date, time and gender. In order to consider patient's names as matched, it was required that both first and last names should be similar in both the sources. Time of arrest was considered to be matched if it was within one hour. Age was considered to be matched if it was within 10 year difference. As it is observed that in cases where patient’s age cannot be verified at the time of incident through authentic sources such as national identification card, then the estimated age is mentioned. Date, gender, cause and hospital name were required to be exactly the same in both data sources in order to be considered as matched.

The number of cardiac arrest patients with 95% confidence intervals (CI) was calculated using the following formulae:

\[
\text{Estimated Value of } n = \frac{(C1+1)(C2+1)(C1-1)}{(m+1)}
\]

95% CI = Estimated value of n ± (Zα/2) SE (est. value of n)

Variance of estimated value of

\[
\text{Variance} = \frac{(C1+1)(C2+1)(C1-m)(C2-m)}{(m+1)^2(m+2)}
\]

Where C1 = number of people in the first capture i.e. EMS data; C2 = number of people in second capture i.e. hospital data and m = number of people in both sample (match).

Using Karachi’s population from last census in 1998 (9.8 million) and a growth rate of 5%, the denominator was calculated to be 20.6 million. The incidence proportion of cardiac arrest patients in Karachi was obtained by dividing the estimated number of cardiac arrest patients by the estimated population of Karachi (P̂ = n/N).

Results

Of the 630 out-of-hospital cardiac arrest cases reported, 191 (30.3%) related to the emergency medical services records and 439 (69.7%) to hospital records. The mean age of the hospital group was significantly higher compared to the EMS population (p<0.001). More male patients presented through the EMS compared to the hospital.
...from two EMS sources would have been 3.7/100,000 population. 8.6/100,000 population, whereas that calculated only from hospital data was estimated to be 166.2/100,000 population (95% CI: 142.9 to 189.6). More restrictive criteria resulted in higher estimate (Table-2). Calculation from individual sources of either hospitals or EMS underestimated the actual burden. The burden calculated only from hospital data would have missed a large number of cardiac arrests occurring outside of hospitals add further complexity as they are difficult to track and document.17

Table-1: Degree of matching defined by three criteria below.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Required features</th>
<th>Hospital, cause of death, name and age of patient</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Date, time and gender</td>
<td>All four of above matched</td>
</tr>
<tr>
<td>B</td>
<td>Date, time and gender</td>
<td>Any three matched</td>
</tr>
<tr>
<td>C</td>
<td>Date, time and gender</td>
<td>Any two matched</td>
</tr>
</tbody>
</table>

Table-2: Annual incidence of cardiac arrest with 95% confidence intervals on three levels of matching criteria.

<table>
<thead>
<tr>
<th>Matching of criteria</th>
<th>Estimated annual incidence per 100,000 population</th>
<th>95% CI for rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (Complete match)</td>
<td>554</td>
<td>421-686</td>
</tr>
<tr>
<td>B (Three out of four match)</td>
<td>277</td>
<td>227-326</td>
</tr>
<tr>
<td>C (Two out of four match)</td>
<td>166</td>
<td>142-189</td>
</tr>
</tbody>
</table>

C: confidence interval.

The burden estimated through capture-recapture method from Karachi, Pakistan, was relatively higher compared to the estimates from high-income countries (HICs). A prospective observational study done across 10 sites in North America reported the incidence of non-traumatic, EMS-assessed OHCA as ranging from 71.8/100,000 in Ottawa to as high as 159/100,000 in Dallas.18 Another systematic review estimated EMS attended OHCA ranging from 24/100,000 person years in Bohemian to 186/100,000 person years in New York. Whereas, among the HICs of East-Asia the OHCA rates were reported to be lower than other high-income settings (52.5/100,000 person years).6

EMS systems in LMICs are at different developmental phases and maturity. In Pakistan, for example, EMS is still in the development phase.11 Most ambulance services do not provide interventions, such as CPR or external defibrillation, and are primarily patient transport services and often have lack of clinical oversight. In Karachi, the three main ambulance services have their own call numbers which make it difficult for users. Hospital-based emergency care is also variable as there are only two hospitals with emergency care providers available for majority of the time. Counting cardiac arrests based only on ambulance transportation would have missed a large number of cardiac arrests transported by other modes of transportation.

Using the least restrictive criteria, only 9(1.4%) cases matched in both the samples. The burden of OHCA was calculated to be 93.8 per day. This figure was extrapolated to be 34257.2 per year. This figure was divided by Karachi’s projected population for the year 2013, which was calculated to be 20.6 million. The annual incidence was estimated to be 166.2/100,000 population (95% CI: 142.9 to 189.6). More restrictive criteria resulted in higher estimates (Table-2). Calculation from individual sources of either hospitals or EMS underestimated the actual burden. The burden calculated only from hospital data would have estimated the OHCA incidence to be 8.6/100,000 population, whereas that calculated only from two EMS sources would have been 3.7/100,000 population.

Discussion

The results of the current study show that estimation of OHCA incidence based on the individual sources of either hospitals or EMS would have counted only 5% and 2.2% of the total cardiac arrests respectively. This level of underestimation is consistent with weak health information and disease surveillance systems, especially for conditions presenting in acute care settings. Deaths occurring outside of hospitals add further complexity as they are difficult to track and document.17

In terms of limitations, there are four major assumptions for the method of capture-recapture to produce consistent results.14 First, the population should be closed and that the time period between capture and recapture should not be so long that the population changes and it should be long enough to allow for all marked individuals to be dispersed. In this study, the capture-recapture sampling took place at the same time, so this assumption was fulfilled. Secondly, the chances for each individual in the population to be caught should be equal and constant during both capture and recapture periods. All the areas of the city had access to the five hospitals, which could be observed from the fact that our sample had a representation from all 18 towns of Karachi city. At the same time, none of the areas were uncovered from the networks of EMSs from which we obtained the data as these ambulances are two major services of Karachi with access to all city areas. One of the limitations of this process...
was that we were not able to obtain permission from all the selected hospitals and EMS sites as planned, which would have given us a more representative sample. Thirdly, the capture sources should be independent. This assumption is difficult to fulfill in most studies and we faced the same situation. Some of the cardiac arrest cases do not present to hospitals and are declared dead at home by the nearest available healthcare provider and, hence, these cases can neither be captured by EMS sample nor by hospital samples. It would have been the sample of patients who presented to EMS and, hence, transported to major hospitals either for treatment or obtaining death certificates. Due to potential dependency, our estimates are likely to underestimate the actual numbers. Finally, individual cases do not lose their mark, in other words the capture information is correct. The data collected on patients by the ambulance services and hospitals is part of the administrative information obtained by hospitals and EMSs. The information is often linked to billing and includes basic information such as name, age and gender and is less likely to be incorrect.

Conclusion
Capture-recapture was found to be a useful alternative to estimate population level incidence where data systems are weak.

Disclaimer: This project was part of the Masters thesis presented by Ms. Minaz Mawani.

Conflict of Interest: None.

Source of Funding: The study was funded through the "Johns Hopkins-Pakistan International Collaborative Trauma and Injury Research Training Program" [Award number 2D43-TW007-292] from the Fogarty International Centre, National Institute of Health. The funders had no role in study design, data collection and analysis. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Fogarty International Center or NIH.

References