HAZARDOUS EFFECTS OF INVOLUNTARY SMOKING

In USA since 1964 the Surgeon General has identified smoking as the single most important cause of preventable mortality, but it is only recently that attention has been focussed on the adverse effects of involuntary passive smoking on human health. Involuntary smoking occurs when non smokers are exposed to tobacco smoke of smokers in enclosed environments. There are two main sources of environmental tobacco smoke, namely the main stream (exhaled smoke of the smoker) and the side stream (smoke emitted from the lit end of the cigarette). Qualitatively, the two types of smokes have similar components but midstream smoke has a higher PH, smaller particles and higher concentration of carbon monoxide. Approximately 85% of the smoke generated during cigarette smoking consists of side stream smoke but the adverse effect of involuntary smoking depends upon various factors like filtered or non filtered cigarette, low or high tar/nicotine, smoking rate, room size, ventilation and duration of exposure. Markers which measure tobacco smoke exposure in, non smokers include carbon monoxide, thio cyanate, nicotine and cotinine, and urinary mutagenes. Of these nicotine and cotinine have received maximum attention, with cotinine as the most accepted short term marker in epidemiological studies because of its long half life, lack of fluctuations during smoke exposure and its non invasive determination in urine and saliva. Strong correlation exists between urinary cotinine levels and exposure to tobacco smoke. On the basis of biochemical markers, the level of exposure to environmental tobacco smoke is approximately equal to smoking 0.1 - 1 cigarette/day in UK and upto 2/day in Japan. In areas which are heavily polluted with sidestream smoke (CO 20 um/L) tobacco smoke inhalation by involuntary smokers is equal to half to one cigarette/day. The health effect of environmental tobacco smoke in non smokers married to smokers is 1.41 to 1.87 which drops to 1.09 to 1.45 in non smokers married to non smokers showing a 7.4% death rate due to lung cancer in non smokers/100,000 person years. Three prospective studies also showed a slightly higher risk of lung cancer in nonsmokers married to smokers, while 10 of 15 case controlled studies also showed an increased risk of lung cancer in non smokers, married to smokers as compared to those married to non smokers while others reported no increased risk. Six of these studies showed a dose response relation between passive smoking and lung cancer. Several studies show a strong association of environmental tobacco smoke to squamous cell and small cell carcinoma than with other cell types affected by lung cancer. No increased risk of lung cancer was reported from USA, Hong Kong and UK in non smoker females married to smokers, however in view of misclassification of exposure, interviewer and observer bias and improper matching of case/controls, the results of these studies should be regarded with caution. Most studies though are not comparable in terms of study design, population size, tobacco type, manner of consumption, extent and duration of tobacco smoke in the working place but almost all showed a positive association of lung cancer in passive smokers. The effect of passive smoking on chronic respiratory symptoms has also been studied. Of 9 studies, 7 showed a significant association while 4 did not. In one of the studies extending over 20 years, the effect of passive smoke exposure at the work place showed a significant reduction in forced and expiratory flow and FEVi in non smokers exposed to smoke than in non smokers not exposed to environmental smoke. Similarly a French study showed a dose response relation between reduction in pulmonary function and increase in number of cigarettes smoked daily by the spouse, moreover percent reduction in forced
expiratory flow was observed only in non smoking females over the age of 40 years. Significant
association of exacerbation of asthma with tobacco smoke exposure has been reported in two
studies57,59 while the third showed no association58. Variations in results are probably due to variations
in patient’s characteristics especially their hyper responsiveness59. Cardiovascular diseases are also
strongly associated with various risk factors, including smoking60. Four of five studies showed
association of tobacco smoke exposure in non smokers to the occurrence of heart disease52,61-63. In one
study, with a 12 years follow up of non smokers aged 25 or over, a significant higher mortality rates
from arteriosclerotic heart disease was observed in both sexes when they lived with smokers, but a sig-
nificant dose response trend was observed in females only63. The possible effects of exposure to
parental tobacco smoke on the frequency and severity of acute respiratory illness in children has been
studied in 4 prospective and 9 case controlled studies. Almost all of them showed an increas frequency
of both upper and lower respiratory problems in children of smokers than non smokers64-72, moreover
mother’s smoking had a stronger influence68,69. A positive dose response reduction has been found in
the children’s lung function and the number of smokers within the house. Younger children are more
strongly affected than the older ones. Similarly an association of exposure of parental smoke has been
found with increased frequency of chronic middle ear effusions and infections in children aged 4 years
or below73-77. The long term effects of smoke associated problems and reduction in pulmonary
function in children has not been studied but the higher incidence of lung cancer in adults exposed to
environmental smoke as a public health problem78. Further studies should be undertaken to accurately
measure the exposure to tobacco smoke in environment.

REFERENCES

1. Idem. The health consequences of involuntary smoking; a report of the Surgeon General.
2. National Research Council, Committee on passive smoking, environmental tobacco smoke;
7. Fuyerabend, C., Ings, R.M. and Russell, M.A. Nicotine pharmacokinetics and its npplication to
8. Fuyerabend, C., Higenbottam, T. and Russell, M.A. H. Nicotine concentrations in urine and saliva of
Ther., 1984; 35:499.
10. Russell, MA., West, R.J. and Jarvis, MJ. Intravenous nicotine stimulation of passive smoking to
estimate dosage to exposed non- smokers. Br. 3. Addict., 1985; 80:201.
11. JaMs, M. J., Tunstall-Pedoe, H., Fuyerabend, C., Vesey, C. and Saloojee, Y. Biochemical markers of
smoke absorption and self reported exposure to passive smoking. J. Epidemiol. Community Health,
1984; 38:335.
13. Coultas, D.B., Howard, C.A., Peake, G.T., Skipper, Bi. and Samet, J.M. Salivary cotinine levels and

35. Garfinkel, L, Auerbach, 0. and Joubert, L Involuntary smoking and lung cancer, a case-control study. JNCI., 1985; 75:463.
