sharing the information, doctors can create a good relationship with patients and families, which leads to smooth transition of events of continuing and terminal care. It must also be said that although more than 27% doctors felt disturbed or disappointed, it must be realised that death is the only sure event in our lives. Dying is not a failure. It is dying with loss of dignity and in distressing symptoms, which is deemed unacceptable.

Although more than 85% of doctors had heard about/seen/worked in a hospice, only 2.8% mentioned that hospice would be their patients' preferred place for dying. In fact, 22% mentioned that they would prefer hospitals. This figure is very much culturally dependent. In Belgium, which is a Western European country, with lot of emphasis on individualism, data suggests that only 16% of the patients die at home, whereas 76% die in hospital/nursing home. In contrast to that, data from Italy, which is a Mediterranean country with strong family values, shows that 86% of patients die at home and only 14% in hospital and nursing homes. Wide availability of Palliative Medicine services should enable the patients to die at home, with their loved ones. Hospitals have been felt too intrusive or busy at times to deal with the dying patients. The findings of this survey indicate that doctors are conscious of patients' needs while making decisions about the venue of the patients' last days.

References

Short Reports

Role of Methylene Blue Infusion in Per-Operative Localization of Parathyroid Glands

M.S. Shamim R. Soomro, Moizuddin
Department of Surgery, Liaquat National Hospital, Karachi.

Introduction

Hyperparathyroidism (HPT) is a disease of diverse clinical presentation. Adenoma, hyperplasia and carcinoma of parathyroid glands form the common basis for the etiology of primary hyperparathyroidism. The clinical presentations of Primary HPT are innumerable with a wide variety of available diagnostic and localization techniques. However, as far as the treatment is concerned, surgery is at present the only potentially permanent solution. A variety of localization techniques have been used for preoperative and per-operative localization of the parathyroid glands with variable sensitivity and specificity.1

The initial exploration for primary HPT is successful in 90 - 97 % of cases in which the abnormal glands have not been localized prior to surgery, and the surgeon is "experienced" in parathyroid gland surgery.2-4 In the third world clinical setup, where referral system and subspecialty centers are not in vogue at the moment, preoperative localization of Parathyroid glands is required. Intraoperative infusion of methylionine chloride tetramethylthionine.
chloride (methylene blue) for localization the Parathyroid glands is a less costly method as compared to newer preoperative localization techniques, and perhaps more practically effective for third world countries. The introduction of methylene blue for rapid intraoperative identification of the parathyroid glands is credited to Dudley\(^5\) and later augmented by others.\(^6\)

Five cases of primary HPT are reported, each with a different clinical presentation and cause of the disease. The experience of intraoperative localization of the parathyroid glands using methylene blue infusion, a long forgotten method, is also revisited in this article.

Table 1. Methylene blue Infusion Scoring Scale (MISS) for the Change in color of parathyroid gland.

<table>
<thead>
<tr>
<th>Score</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No uptake, no or very little difference in color, no blue tinge</td>
</tr>
<tr>
<td>1</td>
<td>Little uptake, mild difference in color, very light blue tinge, only obvious on close observation</td>
</tr>
<tr>
<td>2</td>
<td>Good uptake, moderate difference in color, blue tinge visible without difficulty</td>
</tr>
<tr>
<td>3</td>
<td>Excellent uptake, gland turned deep blue to purple in color</td>
</tr>
</tbody>
</table>

Table 2. Results.

<table>
<thead>
<tr>
<th>S.No</th>
<th>Age (years)</th>
<th>Sex</th>
<th>Presentation</th>
<th>Scan result</th>
<th>MISS score</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22</td>
<td>F</td>
<td>Weakness, low grade fever for 2 months</td>
<td>Hyperactive left upper PTH gland</td>
<td>3</td>
<td>PTH adenoma</td>
</tr>
<tr>
<td>2</td>
<td>58</td>
<td>F</td>
<td>Acute pancreatitis with drowsiness and confusion for 24 hours</td>
<td>Hyperactive right upper PTH gland</td>
<td>3</td>
<td>PTH adenoma</td>
</tr>
<tr>
<td>3</td>
<td>73</td>
<td>F</td>
<td>Joint pains for 12 months</td>
<td>Hyperactive left lower PTH gland</td>
<td>2</td>
<td>PTH adenoma</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>M</td>
<td>Generalized bone pain, loss of visual acuity, diagnosed case of MEN I syndrome</td>
<td>All four hyper-functioning glands</td>
<td>3,2,2,1</td>
<td>Hyperplasia with adenoma of one gland</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>M</td>
<td>Recurrent fractures, UTI, weight loss and depression for 4 months</td>
<td>Hyperactive and enlarged right upper PTH gland</td>
<td>3</td>
<td>PTH adenocarcinoma</td>
</tr>
</tbody>
</table>

F = Female, M = Male, PTH = Parathyroid
section (for confirmation) and later for formal histopathological examination.

At the end of the study period, variables in all the cases were studied. The findings of the Sestamibi scan and per-operative localization of the parathyroid glands by methylene blue were compared.

Surgery was performed in 5 patients (2 males, 3 females) surgery for primary HPT (Table 2). Mean age was 38.4 years. Each patient had a different clinical presentation. Sestamibi scan done in all five patients showed a single hyperfunctioning gland in 3 of them. All were reported as an adenoma after histopathological examination. A young boy with Multiple Endocrine Neoplasia Syndrome type 1 (MEN-1) showed hyperfunction of all four glands on Sestamibi scan while the histopathology report revealed adenoma in one of the gland with hyperplasia of the other three glands. Sestamibi scan of a patient with recurrent fractures revealed a single enlarged hyperactive gland, which was an adenocarcinoma on histological examination.

A total of eight glands were removed from five patients. Four out of eight showed an excellent uptake of Methylene-blue (MISS - 3), three of them showed a good uptake (MISS - 2), while one gland did not show any significant uptake (MISS-1, this was the last of the explored glands in the patient with MEN syndrome).

None of our patients showed untoward effects (arrhythmias, change in pulse rate or blood pressure) during the infusion of methylene blue. Although the colour of urine of all patients turned blue and had a tinge of blue for some days.

Discussion

Ever since it has been possible to measure serum calcium, the annual incidence of primary HPT has risen and the proportion of cases with asymptomatic disease has also increased. In developed countries, almost all parathyroid surgery is performed in centers or departments of Endocrine surgery. In developing countries where a referral system is not established, surgeons with experience (but not necessarily in parathyroid surgery) usually undertake the procedure. In such situations preoperative localization has significant value.

Primary HPT continues to be a disease of middle or late life, particularly in women, and frequently exists in a mild form. These facts and the variety of presenting clinical features of HPT are quite evident even in our small patient group. In 1990 the National Institute of Health (NIH) in the UK concluded that preoperative localisation of the parathyroid glands is unnecessary for primary exploration. Bilateral neck exploration performed by an "experienced parathyroid surgeon" is curative in excess of 95% of cases. Although the debate of who is to be called an "experienced parathyroid surgeon" is unsettled, however, the fact that preoperative localization of parathyroid glands is needed in the developing countries is understandable.

Due to the small size, variable appearance and anatomical location, the intra-operative search for parathyroid glands is more often than not a source of frustration for the surgeon and can significantly prolong the operating time. Per-operative staining of parathyroid glands by intravenous infusion of methylene blue has been shown to overcome these problems. In our series of eight parathyroid glands, seven showed excellent / good uptake of methylene blue. This uptake was helpful in the localization of the glands. It also corresponded with the abnormal glands on the Sestamibi scan. Dudley, in 1971, introduced this use of methylene blue and considered it reasonable and safe. In 1975 Gordon and co-workers advocated the use of Methylene blue for this purpose. Cox and colleagues, in 1979, reported the application and efficacy of this technique. In 1985 Bland and associates reviewed the technique and reported a significant reduction in operating time due to the ease in locating the glands.

During the last two decades the role of methylene blue faded away giving way to newer techniques (conventional and endoscopic Ultrasound, Computed tomography scan, Magnetic resonance imaging, Radio-nuclide scans and preoperative use of gamma-probe). Technetium-Sestamibi scan is considered to be the preoperative localization technique of choice at the moment. These investigations are now indicated for recurrent HPT which entails technically difficult surgery even for "experienced parathyroid surgeons".

In developing countries it is not possible to use such a variety of investigative tools in all cases of primary HPT (because of expense or availability), nor are "experienced parathyroid surgeons" easily available. Therefore, the role of methylene blue infusion in per-operative localization of parathyroid glands should be reconsidered to achieve the benefit of reduction in operating time, ease of identification of glands intraoperatively and facilitating the cost-effective management of primary HPT.

Conclusion

The experience with methylene blue infusion in per-operative localization of parathyroid glands, supported by world literature, show that intraoperative methylene blue infusion is an effective and safe method for localization of abnormal parathyroid glands and can compensate for the non-availability of expensive pre-operative investigations and relative lack of experienced parathyroid surgeons in the developing countries.
Prevalence of Hepatitis C Virus in Lymphoproliferative Disorders

F. Bilwani, Y. Zaidi, G. N. Kakepoto, S. N. Adil, M. Khurshid
Department of Pathology, The Aga Khan University Hospital, Karachi.

Abstract

Objective: To study the prevalence of hepatitis C virus in lymphoproliferative disorders.

Methods: A case control prospective study was performed on 143 patients with lymphoproliferative disorders and 29 patients with non-hematological malignancies were taken as controls. All the patients in both groups were analyzed for various risk factors for infection with hepatitis C virus and were tested for the presence of hepatitis C virus antibody (anti HCV), cryoglobulins and rheumatoid factor antibody. Hepatitis C viremia was documented by detection of HCV RNA by polymerase chain reaction.

Results: There was no significant difference for risk factors for hepatitis C virus infection in both the groups except for the increase in number of surgical procedures being carried out in the control group. There was no significant difference in the presence of rheumatoid factor antibody in both the groups and cryoglobulins were not positive in any individual. Five percent patients with lymphoproliferative disorders and 3.4% with non-hematological malignancies were positive for anti HCV. HCV RNA was detected in 29.2% cases and 31.0% in controls.

Conclusion: There was no association between hepatitis C virus infection and lymphoproliferative disorder in our population. However, further studies are required from this region to establish any causal relationship between hepatitis C virus infection and lymphoproliferative disorder (JPMA 54:202;2004).

Introduction

Hepatitis C virus has recently been implicated in the etiology of lymphoproliferative disorders. Hepatitis C virus (HCV) is an RNA virus that belongs to the family of flavivirus. The natural targets of HCV are hepatocytes and possibly B-lymphocytes.1 In infected patients, HCV-related antigens have been found in peripheral blood B and T lymphocytes, lymph nodes and lymphocytes infiltrating the liver.2 Eli Zukerman et al have reported a higher prevalence of monoclonal Ig H rearrangement and bcl - 2 translocation in patients with hepatitis infection than in patients with chronic liver disease of other etiologies. These data also suggest that HCV may play a role in the multistep mechanism of lymphomagenesis by inducing proliferation of B cell and inhibition of apoptosis.3

It has also been postulated that the association between HCV infection, mixed cryoglobulinemia and lymphoplasmacytic lymphoma raises the possibility that HCV may be initiating agent or a cofactor in the pathogenesis of non-Hodgkin's Lymphoma.2 Previous studies clearly show a relationship between HCV and mixed cryoglobulinemia, a condition that is strongly associated with lymphoplasmacytic lymphoma, a low grade B cell NHL.4 Study conducted by Linda et al found that HCV 2 a and 3 genotype was detected with higher prevalence in patients with mixed cryoglobulinemia than in controls.5 It has also been found that haplotype HLA - B8 and DR 3 is strongly associated with the development of HCV - related mixed cryoglobulinemia.

References