Original Article

Differential Expression of CK 19 in follicular adenoma, Well-differentiated tumour of uncertain malignant potential (WDT-UMP) and follicular variant of papillary carcinoma

Uzma Bukhari,1 Saleem Sadiq,2 Shanaz Imdad Kehar3
Pathology Department, Muhammad Medical College, Mirpurkhas,1 Pathology Department, Basic Medical Sciences Institute, Jinnah Postgraduate Medical Centre, Karachi.2,3

Abstract

Objective: To see the expression of cytokeratin 19, a proven helpful marker for the differential diagnosis of neoplastic follicular patterned lesions of thyroid.

Methods: This was a retrospective study carried out in the Department of Pathology, Basic Medical Sciences Institute, Jinnah Postgraduate Medical Centre, Karachi from 2000 to 2005. The haematoxylin and eosin (H&E) stained sections were reviewed and the cases were classified according to already published criteria. On the basis of the recent recommendations by Chernobyl Pathologists Group, encapsulated follicular patterned lesions with questionable nuclear changes were categorized as well-differentiated tumours of uncertain malignant potential (WDT-UMP). Formalin fixed paraffin embedded tissues of follicular adenoma, WDT-UMP and follicular variant of papillary carcinoma were obtained for CK 19 immunostaining.

Results: All (16) cases of follicular adenoma were negative for CK19. In a total of 35 cases of WDT-UMP, 10 cases scored 3+ positive for CK19, 15 were 2+ positive and remaining 10 cases were 1+ positive. There were 43 cases of follicular variant of papillary carcinoma with 4+ CK 19 positivity, 14 were 3+ positive and 3 were 2+ positive.

Conclusion: CK19 is a good and useful diagnostic marker for differential diagnosis of follicular adenoma, WDT-UMP and follicular variant of papillary carcinoma. The recommendations by Chernobyl Pathologists Group need to be adopted and the cases of WDT-UMP require strict follow-up (JPMA 59:15; 2009).

Introduction

Follicular adenoma (F.A) is the second common cause of thyroid enlargement after multinodular goiter.1 It is a benign, encapsulated tumour of the thyroid showing evidence of follicular cell differentiation.2

Pathologic diagnosis and classification of thyroid tumours are based, to a large extent, on the microscopic appearance of the specimens. Despite the general acceptance of the World Health Organization classification of thyroid tumours, the histological diagnosis of neoplastic follicular patterned lesions of thyroid is remains one of the most problematic area in surgical pathology.3

A frequent problem posed by encapsulated follicular lesion is that papillary carcinoma like nuclear changes are present focally.4 Chernobyl Pathologists Group categorized these tumours as well-differentiated tumours of uncertain malignant potential (WDT-UMP).5,6

Papillary carcinoma is the most common form of well-differentiated malignant thyroid neoplasm. Follicular variant of papillary thyroid carcinoma (FV-PTC) is the most frequent variant of papillary thyroid carcinoma after the classic type.7 Usually the diagnosis of this variant is straightforward, however diagnostic problems arise when the characteristic nuclear features are not diffusely distributed throughout the lesion but are present focally or multi focally.8

Multiple studies have demonstrated great interobserver variability in the diagnosis of these tumours, even among experts in thyroid pathology, thus underscoring the difficulties in properly defining the criteria for the diagnosis of this particular type of papillary thyroid carcinoma. This fact has immediate practical consequences for these patients, as over diagnosis of this condition may lead to excessive treatment, including total thyroidectomy followed by radioactive iodine therapy.9

Obviously the Pathologist's diagnostic decision in dealing with these cases is not simply a matter of tumour classification. The distinction between benign and malignant lesion is clearly important. Further distinction of papillary carcinoma is meaningful at a clinical level because prognosis and metastatic spread differ considerably between the two.10 Thus new methods that can simply and accurately distinguish benign from malignant tumours are greatly desired.11

Cytoskeletal proteins have been utilized in an attempt to resolve this issue. Cytokeratin 19 (CK19) is the most commonly used cytokeratin investigated in thyroid lesions.12 Papillary carcinoma has been shown to express CK 19 with...
strong diffuse cytoplasmic reactivity. The expression of this marker was 100% sensitive and 82.5% specific for papillary cancers by Guyetant et al. A study by Schelfhout et al showed that this marker can be helpful in differentiating papillary carcinoma from follicular adenoma.

No study on CK 19 expression in thyroid lesions has been done in Pakistan. Therefore keeping in mind all the difficulties related to these lesions, an attempt was made to see CK 19 expression in these cases.

Material and methods

This was a retrospective study carried out in the Department of Pathology, Basic Medical Sciences Institute, Jinnah Postgraduate Medical Centre, Karachi. For this study formalin fixed paraffin embedded tissues were obtained from the department from the period 2000 to 2005. The haematoxylin and eosin (H&E) stained sections were reviewed and the cases were classified according to already published criteria. On the basis of the recent recommendations by Chernobyl Pathologists Group, encapsulated follicular patterned lesions with questionable nuclear changes were categorized as WDT-UMP. The selected (111) cases included F.A (16 cases), WDT-UMP (35 cases) and FVPC (60 cases).

Immunohistochemistry:

Section of 5um thickness were cut and mounted on saline coated slides. Antigen retrieval was performed in citrate by pressure cooker technique. A mouse monoclonal CK19 antibody (Ready to use clone BA-17, Labvision, USA) was used as the primary antibody. The staining was completed with immunoperoxidase technique. Sections where the primary antibody had been omitted served as negative controls and known CK 19 positive colon cancer was used as the positive control (Fig-1).

Quantification of immunohistochemistry results

CK 19 staining profile was classified according to the relative number of positive cells (cytoplasm) of tumour. The scoring system given by Schelfhout et al was used, which is as follows:

- **a)** Negative, no cytoplasmic staining in any tumour cell.
- **b)** 1+, cytoplasmic CK19 staining in 5% or less than 5% tumour cells.
- **c)** 2+, cytoplasmic CK19 staining in 5-50% tumour cells
- **d)** 3+, cytoplasmic CK19 staining in 50-95% tumour cells
- **e)** 4+, cytoplasmic CK19 staining in more than 95% tumour cells

Results

All (16) cases of follicular adenoma were negative for CK19 (Fig -1). Out of the 35 cases of well-differentiated tumours of uncertain malignant potential, 10 cases stained 3+ positive for CK 19, 15 cases showed 2+ positivity while remaining 10 cases were 1+ positive (Fig - 2). Out of 60 cases of follicular variant of papillary carcinoma, 43 cases

<table>
<thead>
<tr>
<th>Type</th>
<th>Score</th>
<th>4+</th>
<th>3+</th>
<th>2+</th>
<th>1+</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.A* (n=16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>WDT-UMP ** (n=35)</td>
<td></td>
<td>10</td>
<td>15</td>
<td>10</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>FV-PTC (n=60)</td>
<td>43</td>
<td>14</td>
<td>3</td>
<td></td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

* encapsulated tumours without nuclear changes.
** encapsulated tumours with questionable nuclear changes.

Figure 1: Photomicrograph of follicular adenoma showing negative CK-19 staining IHC X 200.

Figure 2: Photomicrograph of WDT-UMP showing 1+ positivity for CK-19. IHC X 100.
showed 4+ positivity (Fig - 3), 14 were 3+ positive and 3 stained 2+ positive (Table).

Discussion

The histological diagnosis of well circumscribed thyroid nodules without capsular or vascular invasion is not always straightforward. A common diagnostic dilemma arises when an encapsulated nodule with a follicular pattern of growth exhibits some but not all of the features of papillary thyroid carcinoma (PTC). In such instances distinguishing follicular adenoma from encapsulated follicular variant of papillary thyroid carcinoma (FV-PTC) becomes difficult. Since the recognition of the follicular variant of papillary carcinoma, there has been a gradual extension of the category to include lesions with minor nuclear changes. Pathologists face this problem all the time. Chernobyl Pathologists Group suggested that it is more appropriate to recognize this difficulty than to arbitrarily place well-differentiated encapsulated tumours with a follicular architecture where minor nuclear changes are the only indicator of a papillary carcinoma in a definite malignant or definite benign category. They referred to these tumours simply as well differentiated and used the term WDT-UMP for those lesions having questionable or incomplete nuclear changes and without capsular invasion.5,6

Since the recognition of the follicular variant of papillary carcinoma, there has been a gradual extension of the category to include lesions with minor nuclear changes. Pathologists face this problem all the time. Chernobyl Pathologists Group suggested that it is more appropriate to recognize this difficulty than to arbitrarily place well-differentiated encapsulated tumours with a follicular architecture where minor nuclear changes are the only indicator of a papillary carcinoma in a definite malignant or definite benign category. They referred to these tumours simply as well differentiated and used the term WDT-UMP for those lesions having questionable or incomplete nuclear changes and without capsular invasion.5,6

The technique of immunohistochemistry has much appeal for the surgical pathologist as it is relatively simple and preserves morphologic detail.18 Cytokeratin 19 is the low molecular weight cytokeratin.19 Baloch et al20 found that CK19 could be helpful in differentiating papillary cancers from follicular adenoma and follicular carcinoma.

In the current study, CK19 expression was seen in 60 cases of follicular variant of papillary carcinoma. Most of our cases were 4+ (>95\% cells) positive. These findings are in agreement with those of Schelfhout et al.16 Beesley et al19 and Sahoo et al22 who also found diffuse CK19 positivity in their cases of papillary carcinoma.

All our cases of follicular adenomas were negative for CK19. These results are somewhat in accordance to several authors13,16,21,23 who reported nil or focal positivity for CK19 in follicular adenomas, which were diagnosed on the basis of existing criteria.

We reviewed and categorized encapsulated lesions with questionable or incomplete nuclear changes as WDT-UMP according to the recent recommendations by Chernobyl Pathologists Group. In Turkey, Koseoglu et al22 also followed these recommendations and categorized 2 cases of follicular patterned lesions with questionable nuclear changes as WDT-UMP. Total thyroidectomy was performed in those cases.

In our study significant positivity for CK19 was seen in WDT-UMP. However no immunohistochemical study on WDT-UMP was found in literature. This might be due to the fact that the use of this nomenclature has not as yet been universally accepted.

It is possible that lesions in which the nuclear changes are "questionable" represent an early development of papillary carcinoma in a preexisting benign lesion as suggested by the fact that in microdissection experiments the RET/PTC rearrangements are restricted to these foci.25

CK19 can be a good and useful ancillary diagnostic tool for diagnosing follicular lesions with questionable nuclear changes and there is a need to separate them from common adenomas (encapsulated follicular neoplasms without nuclear changes) in order to analyze predictive factors.

Conclusion

In conclusion, our study documents the advantage of CK 19 immunostaining in routine surgical pathology for the differential diagnosis of follicular patterned lesions, particularly the cases of encapsulated follicular patterned lesions with questionable nuclear changes (WDT-UMP) and the cases of follicular variant of papillary carcinoma.

The recommendations by Chernobyl Pathologists Group need to be adopted and the cases of WDT-UMP required strict follow-up in order to manage them in the most appropriate way.

References

Comparison of clinical presentation of Benign and Malignant Ovarian Tumours

Tayyiba Wasim, Ashraf Majroh, Saqib Siddiq

Department of OBG, Services Institute of Medical Sciences, Lahore
Department of Community Medicine, Allama Iqbal Medical College, Lahore

Abstract

Objective: To compare clinical presentation of benign and malignant ovarian tumours and to enlist and identify symptoms that could lead to early diagnosis of ovarian carcinoma

Methods: It was a consecutive case series study. All patients who on abdominal or bimanual examination and abdominal U/S were found to have ovarian cyst or tumour, and later underwent laparotomy were included.

Results: The study included 110 patients, of whom 80 (72%) had benign and the rest malignant disease. Mean age of patients with malignancy was 49.07±18.5 years and for benign 36.95±8.2 years (p=0.0001). Eleven patients with benign tumours were asymptomatic, while 66% had abdominal pain. On the other hand 70% patients with ovarian malignancy had abdominal symptoms with abdominal pain in (76%). Abdominal enlargement and abdominal mass were significantly more in malignant tumours (p=0.003, p=0.005). Gastrointestinal symptoms were present in both groups but more significant in malignant group (p=0.004). Constitutional symptoms like loss of appetite and weight loss were only present in malignant group (p=0.001). Seventy percent of the malignant tumours presented at late stage (III & IV). Histopathology of benign tumours revealed follicular/luteal cyst in 32% cases while serous cyst adenoma in 23%. Histopathology of malignant tumours showed serous cyst carcinoma in 46.7% and mucinuous cyst carcinoma in 26% cases.

Conclusions: Ovarian malignancy is a silent killer, especially affecting women above 50 years. Although presentation is often vague and non specific, symptoms are definitely present. Therefore a proper bimanual examination and appropriate investigations should be done at the outset in post menopausal women (JPMA 59:18; 2009).